Spaces:
Running
Running
add debuging and logging
Browse files
model.py
CHANGED
|
@@ -124,6 +124,10 @@ class SmolLM3Model:
|
|
| 124 |
if self.config is None:
|
| 125 |
raise ValueError("Config is required to get training arguments")
|
| 126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
# Merge config with kwargs
|
| 128 |
training_args = {
|
| 129 |
"output_dir": output_dir,
|
|
@@ -155,8 +159,8 @@ class SmolLM3Model:
|
|
| 155 |
"ignore_data_skip": False,
|
| 156 |
"seed": 42,
|
| 157 |
"data_seed": 42,
|
| 158 |
-
"dataloader_num_workers": 4,
|
| 159 |
-
"max_grad_norm": 1.0,
|
| 160 |
"optim": self.config.optimizer,
|
| 161 |
"lr_scheduler_type": self.config.scheduler,
|
| 162 |
"warmup_ratio": 0.1,
|
|
@@ -168,7 +172,15 @@ class SmolLM3Model:
|
|
| 168 |
# Override with kwargs
|
| 169 |
training_args.update(kwargs)
|
| 170 |
|
| 171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
def save_pretrained(self, path: str):
|
| 174 |
"""Save model and tokenizer"""
|
|
|
|
| 124 |
if self.config is None:
|
| 125 |
raise ValueError("Config is required to get training arguments")
|
| 126 |
|
| 127 |
+
# Debug: Print config attributes to identify the issue
|
| 128 |
+
logger.info(f"Config type: {type(self.config)}")
|
| 129 |
+
logger.info(f"Config attributes: {[attr for attr in dir(self.config) if not attr.startswith('_')]}")
|
| 130 |
+
|
| 131 |
# Merge config with kwargs
|
| 132 |
training_args = {
|
| 133 |
"output_dir": output_dir,
|
|
|
|
| 159 |
"ignore_data_skip": False,
|
| 160 |
"seed": 42,
|
| 161 |
"data_seed": 42,
|
| 162 |
+
"dataloader_num_workers": getattr(self.config, 'dataloader_num_workers', 4),
|
| 163 |
+
"max_grad_norm": getattr(self.config, 'max_grad_norm', 1.0),
|
| 164 |
"optim": self.config.optimizer,
|
| 165 |
"lr_scheduler_type": self.config.scheduler,
|
| 166 |
"warmup_ratio": 0.1,
|
|
|
|
| 172 |
# Override with kwargs
|
| 173 |
training_args.update(kwargs)
|
| 174 |
|
| 175 |
+
# Debug: Print training args before creating TrainingArguments
|
| 176 |
+
logger.info(f"Training arguments keys: {list(training_args.keys())}")
|
| 177 |
+
|
| 178 |
+
try:
|
| 179 |
+
return TrainingArguments(**training_args)
|
| 180 |
+
except Exception as e:
|
| 181 |
+
logger.error(f"Failed to create TrainingArguments: {e}")
|
| 182 |
+
logger.error(f"Training arguments: {training_args}")
|
| 183 |
+
raise
|
| 184 |
|
| 185 |
def save_pretrained(self, path: str):
|
| 186 |
"""Save model and tokenizer"""
|