File size: 15,771 Bytes
23d4aef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb7bd59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23d4aef
 
 
 
 
 
 
 
 
 
bb7bd59
23d4aef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7cacdf
23d4aef
 
b7cacdf
23d4aef
 
b7cacdf
23d4aef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7cacdf
23d4aef
 
 
 
 
 
 
b7cacdf
23d4aef
 
 
b7cacdf
23d4aef
 
 
 
b7cacdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23d4aef
 
 
 
 
 
 
 
 
 
bb7bd59
23d4aef
 
 
 
 
 
 
bb7bd59
23d4aef
 
 
bb7bd59
23d4aef
 
bb7bd59
 
23d4aef
 
 
bb7bd59
23d4aef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7cacdf
23d4aef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7cacdf
 
 
 
 
 
 
23d4aef
 
 
 
 
584bc13
23d4aef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7cacdf
23d4aef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7cacdf
 
 
 
 
 
23d4aef
 
 
 
 
 
 
b7cacdf
 
 
 
 
 
23d4aef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93727c5
 
23d4aef
93727c5
23d4aef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import gradio as gr
import torch
from PIL import Image
import json
import os
from transformers import AutoProcessor, AutoModelForImageTextToText
from typing import List, Dict, Any
import logging
import spaces

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Model configuration
MODEL_ID = "Tonic/l-android-control"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Get Hugging Face token from environment variable (Spaces secrets)
import os
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
    logger.warning("HF_TOKEN not found in environment variables. Model access may be restricted.")

class LOperatorDemo:
    def __init__(self):
        self.model = None
        self.processor = None
        self.is_loaded = False
        
    def load_model(self):
        """Load the L-Operator model and processor"""
        try:
            logger.info(f"Loading model {MODEL_ID} on device {DEVICE}")
            
            # Check if token is available
            if not HF_TOKEN:
                return "❌ HF_TOKEN not found. Please set HF_TOKEN in Spaces secrets."
            
            try:
                # Try loading with standard approach
                self.processor = AutoProcessor.from_pretrained(
                    MODEL_ID, 
                    trust_remote_code=True,
                    token=HF_TOKEN
                )
                
                self.model = AutoModelForImageTextToText.from_pretrained(
                    MODEL_ID,
                    torch_dtype=torch.bfloat16 if DEVICE == "cuda" else torch.float32,
                    trust_remote_code=True,
                    device_map="auto" if DEVICE == "cuda" else None,
                    token=HF_TOKEN
                )
                
            except Exception as e:
                logger.warning(f"Standard loading failed: {str(e)}")
                logger.info("Attempting fallback loading approach...")
                
                # Fallback: try loading with explicit model type
                self.processor = AutoProcessor.from_pretrained(
                    MODEL_ID, 
                    trust_remote_code=True,
                    token=HF_TOKEN,
                    revision="main"
                )
                
                self.model = AutoModelForImageTextToText.from_pretrained(
                    MODEL_ID,
                    torch_dtype=torch.bfloat16 if DEVICE == "cuda" else torch.float32,
                    trust_remote_code=True,
                    device_map="auto" if DEVICE == "cuda" else None,
                    token=HF_TOKEN,
                    revision="main",
                    ignore_mismatched_sizes=True
                )
            
            if DEVICE == "cpu":
                self.model = self.model.to(DEVICE)
            
            self.is_loaded = True
            logger.info("Model loaded successfully with token authentication")
            return "βœ… Model loaded successfully with token authentication!"
            
        except Exception as e:
            logger.error(f"Error loading model: {str(e)}")
            return f"❌ Error loading model: {str(e)} - This may be a custom model requiring special handling"
    
    @spaces.GPU(duration=120)  # 2 minutes for action generation
    def generate_action(self, image: Image.Image, goal: str, instruction: str) -> str:
        """Generate action based on image and text inputs"""
        if not self.is_loaded:
            return "❌ Model not loaded. Please load the model first."
        
        try:
            # Convert image to RGB if needed
            if image.mode != "RGB":
                image = image.convert("RGB")
            
            # Build conversation
            conversation = [
                {
                    "role": "system",
                    "content": [
                        {"type": "text", "text": "You are a helpful multimodal assistant by Liquid AI."}
                    ]
                },
                {
                    "role": "user",
                    "content": [
                        {"type": "image", "image": image},
                        {"type": "text", "text": f"Goal: {goal}\nStep: {instruction}\nRespond with a JSON action containing relevant keys (e.g., action_type, x, y, text, app_name, direction)."}
                    ]
                }
            ]
            
            # Process inputs
            inputs = self.processor.apply_chat_template(
                conversation,
                add_generation_prompt=True,
                return_tensors="pt"
            ).to(self.model.device)
            
            # Generate response
            with torch.no_grad():
                outputs = self.model.generate(
                    inputs,
                    max_new_tokens=128,
                    do_sample=True,
                    temperature=0.7,
                    top_p=0.9
                )
            
            response = self.processor.tokenizer.decode(
                outputs[0][inputs.shape[1]:], 
                skip_special_tokens=True
            )
            
            # Try to parse as JSON for better formatting
            try:
                parsed_response = json.loads(response)
                return json.dumps(parsed_response, indent=2)
            except:
                return response
                
        except Exception as e:
            logger.error(f"Error generating action: {str(e)}")
            return f"❌ Error generating action: {str(e)}"
    
    @spaces.GPU(duration=90)  # 1.5 minutes for chat responses
    def chat_with_model(self, message: str, history: List[Dict[str, str]], image: Image.Image = None) -> List[Dict[str, str]]:
        """Chat interface function for Gradio"""
        if not self.is_loaded:
            return history + [{"role": "user", "content": message}, {"role": "assistant", "content": "❌ Model not loaded. Please load the model first."}]
        
        if image is None:
            return history + [{"role": "user", "content": message}, {"role": "assistant", "content": "❌ Please upload an Android screenshot image."}]
        
        try:
            # Extract goal and instruction from message
            if "Goal:" in message and "Step:" in message:
                # Parse structured input
                lines = message.split('\n')
                goal = ""
                instruction = ""
                
                for line in lines:
                    if line.startswith("Goal:"):
                        goal = line.replace("Goal:", "").strip()
                    elif line.startswith("Step:"):
                        instruction = line.replace("Step:", "").strip()
                
                if not goal or not instruction:
                    return history + [{"role": "user", "content": message}, {"role": "assistant", "content": "❌ Please provide both Goal and Step in your message."}]
            else:
                # Treat as general instruction
                goal = "Complete the requested action"
                instruction = message
            
            # Generate action
            response = self.generate_action(image, goal, instruction)
            return history + [{"role": "user", "content": message}, {"role": "assistant", "content": response}]
            
        except Exception as e:
            logger.error(f"Error in chat: {str(e)}")
            return history + [{"role": "user", "content": message}, {"role": "assistant", "content": f"❌ Error: {str(e)}"}]

# Initialize demo
demo_instance = LOperatorDemo()

# Auto-load the model on startup
def auto_load_model():
    """Auto-load the model when the application starts"""
    try:
        logger.info("Auto-loading L-Operator model on startup...")
        result = demo_instance.load_model()
        logger.info(f"Auto-load result: {result}")
        return result
    except Exception as e:
        logger.error(f"Error auto-loading model: {str(e)}")
        return f"❌ Error auto-loading model: {str(e)}"

# Load model automatically (this happens during import)
print("πŸš€ Auto-loading L-Operator model on startup...")
auto_load_model()
print("βœ… Model loading completed!")

# Load example episodes
def load_example_episodes():
    """Load example episodes from the extracted data"""
    examples = []
    
    try:
        # Load episode 13
        with open("extracted_episodes_duckdb/episode_13/metadata.json", "r") as f:
            episode_13 = json.load(f)
        
        # Load episode 53  
        with open("extracted_episodes_duckdb/episode_53/metadata.json", "r") as f:
            episode_53 = json.load(f)
        
        # Load episode 73
        with open("extracted_episodes_duckdb/episode_73/metadata.json", "r") as f:
            episode_73 = json.load(f)
        
        # Create examples with simple identifiers
        examples = [
            [
                "extracted_episodes_duckdb/episode_13/screenshots/screenshot_1.png",
                "Episode 13: Navigate app interface"
            ],
            [
                "extracted_episodes_duckdb/episode_53/screenshots/screenshot_1.png", 
                "Episode 53: App interaction example"
            ],
            [
                "extracted_episodes_duckdb/episode_73/screenshots/screenshot_1.png",
                "Episode 73: Device control task"
            ]
        ]
        
    except Exception as e:
        logger.error(f"Error loading examples: {str(e)}")
        examples = []
    
    return examples

# Create Gradio interface
def create_demo():
    """Create the Gradio demo interface"""
    
    with gr.Blocks(
        title="L-Operator: Android Device Control Demo",
        theme=gr.themes.Soft(),
        css="""
        .gradio-container {
            max-width: 1200px !important;
        }
        .chat-container {
            height: 600px;
        }
        """
    ) as demo:
        
        gr.Markdown("""
        # πŸ€– L-Operator: Android Device Control Demo
        
        **Lightweight Multimodal Android Device Control Agent**
        
        This demo showcases the L-Operator model, a fine-tuned multimodal AI agent based on LiquidAI's LFM2-VL-1.6B model, 
        optimized for Android device control through visual understanding and action generation.
        
        ## πŸš€ How to Use
        
        1. **Model Loading**: The L-Operator model loads automatically on startup
        2. **Upload Screenshot**: Upload an Android device screenshot
        3. **Provide Instructions**: Enter your goal and step instructions
        4. **Get Actions**: The model will generate JSON actions for Android device control
        
        ## πŸ“‹ Expected Output Format
        
        The model generates JSON actions in the following format:
        ```json
        {
          "action_type": "tap",
          "x": 540,
          "y": 1200,
          "text": "Settings",
          "app_name": "com.android.settings",
          "confidence": 0.92
        }
        ```
        
        ---
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("### πŸ€– Model Status")
                model_status = gr.Textbox(
                    label="L-Operator Model",
                    value="πŸ”„ Loading model on startup...",
                    interactive=False
                )
                
                gr.Markdown("### πŸ“± Input")
                image_input = gr.Image(
                    label="Android Screenshot",
                    type="pil",
                    height=400,
                    sources=["upload"]
                )
                
                gr.Markdown("### πŸ“ Instructions")
                goal_input = gr.Textbox(
                    label="Goal",
                    placeholder="e.g., Open the Settings app and navigate to Display settings",
                    lines=2
                )
                
                step_input = gr.Textbox(
                    label="Step Instruction",
                    placeholder="e.g., Tap on the Settings app icon on the home screen",
                    lines=2
                )
                
                generate_btn = gr.Button("🎯 Generate Action", variant="secondary")
                
            with gr.Column(scale=2):
                gr.Markdown("### πŸ’¬ Chat Interface")
                chat_interface = gr.ChatInterface(
                    fn=demo_instance.chat_with_model,
                    additional_inputs=[image_input],
                    title="L-Operator Chat",
                    description="Chat with L-Operator using screenshots and text instructions",
                    examples=load_example_episodes(),
                    type="messages"
                )
                
                gr.Markdown("### 🎯 Action Output")
                action_output = gr.JSON(
                    label="Generated Action",
                    value={},
                    height=200
                )
        
        # Event handlers
        def on_generate_action(image, goal, step):
            if not image:
                return {"error": "Please upload an image"}
            
            if not goal or not step:
                return {"error": "Please provide both goal and step"}
            
            response = demo_instance.generate_action(image, goal, step)
            
            try:
                # Try to parse as JSON
                parsed = json.loads(response)
                return parsed
            except:
                return {"raw_response": response}
        
        # Update model status on page load
        def update_model_status():
            if demo_instance.is_loaded:
                return "βœ… L-Operator model loaded and ready!"
            else:
                return "❌ Model failed to load. Please check logs."
        
        generate_btn.click(
            fn=on_generate_action,
            inputs=[image_input, goal_input, step_input],
            outputs=action_output
        )
        
        # Update model status on page load
        demo.load(
            fn=update_model_status,
            outputs=model_status
        )
        
        # Update chat interface when image changes
        def update_chat_image(image):
            return image
        
        image_input.change(
            fn=update_chat_image,
            inputs=[image_input],
            outputs=[chat_interface.chatbot]
        )
        
        gr.Markdown("""
        ---
        
        ## πŸ“Š Model Details
        
        | Property | Value |
        |----------|-------|
        | **Base Model** | LiquidAI/LFM2-VL-1.6B |
        | **Architecture** | LFM2-VL (1.6B parameters) |
        | **Fine-tuning** | LoRA (Low-Rank Adaptation) |
        | **Training Data** | Android control episodes with screenshots and actions |
        
        ## 🎯 Use Cases
        
        - **Mobile App Testing**: Automated UI testing for Android applications
        - **Accessibility Applications**: Voice-controlled device navigation
        - **Remote Support**: Remote device troubleshooting
        - **Development Workflows**: UI/UX testing automation

                            ---
        
        **Made with ❀️ by Tonic** | [Model on Hugging Face](https://huggingface.co/Tonic/l-android-control) 
        """)
    
    return demo

# Create and launch the demo
if __name__ == "__main__":
    demo = create_demo()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        debug=True,
        show_error=True,
        ssr_mode=False
    )