Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,771 Bytes
23d4aef bb7bd59 23d4aef bb7bd59 23d4aef b7cacdf 23d4aef b7cacdf 23d4aef b7cacdf 23d4aef b7cacdf 23d4aef b7cacdf 23d4aef b7cacdf 23d4aef b7cacdf 23d4aef bb7bd59 23d4aef bb7bd59 23d4aef bb7bd59 23d4aef bb7bd59 23d4aef bb7bd59 23d4aef b7cacdf 23d4aef b7cacdf 23d4aef 584bc13 23d4aef b7cacdf 23d4aef b7cacdf 23d4aef b7cacdf 23d4aef 93727c5 23d4aef 93727c5 23d4aef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
import gradio as gr
import torch
from PIL import Image
import json
import os
from transformers import AutoProcessor, AutoModelForImageTextToText
from typing import List, Dict, Any
import logging
import spaces
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Model configuration
MODEL_ID = "Tonic/l-android-control"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Get Hugging Face token from environment variable (Spaces secrets)
import os
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
logger.warning("HF_TOKEN not found in environment variables. Model access may be restricted.")
class LOperatorDemo:
def __init__(self):
self.model = None
self.processor = None
self.is_loaded = False
def load_model(self):
"""Load the L-Operator model and processor"""
try:
logger.info(f"Loading model {MODEL_ID} on device {DEVICE}")
# Check if token is available
if not HF_TOKEN:
return "β HF_TOKEN not found. Please set HF_TOKEN in Spaces secrets."
try:
# Try loading with standard approach
self.processor = AutoProcessor.from_pretrained(
MODEL_ID,
trust_remote_code=True,
token=HF_TOKEN
)
self.model = AutoModelForImageTextToText.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16 if DEVICE == "cuda" else torch.float32,
trust_remote_code=True,
device_map="auto" if DEVICE == "cuda" else None,
token=HF_TOKEN
)
except Exception as e:
logger.warning(f"Standard loading failed: {str(e)}")
logger.info("Attempting fallback loading approach...")
# Fallback: try loading with explicit model type
self.processor = AutoProcessor.from_pretrained(
MODEL_ID,
trust_remote_code=True,
token=HF_TOKEN,
revision="main"
)
self.model = AutoModelForImageTextToText.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16 if DEVICE == "cuda" else torch.float32,
trust_remote_code=True,
device_map="auto" if DEVICE == "cuda" else None,
token=HF_TOKEN,
revision="main",
ignore_mismatched_sizes=True
)
if DEVICE == "cpu":
self.model = self.model.to(DEVICE)
self.is_loaded = True
logger.info("Model loaded successfully with token authentication")
return "β
Model loaded successfully with token authentication!"
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
return f"β Error loading model: {str(e)} - This may be a custom model requiring special handling"
@spaces.GPU(duration=120) # 2 minutes for action generation
def generate_action(self, image: Image.Image, goal: str, instruction: str) -> str:
"""Generate action based on image and text inputs"""
if not self.is_loaded:
return "β Model not loaded. Please load the model first."
try:
# Convert image to RGB if needed
if image.mode != "RGB":
image = image.convert("RGB")
# Build conversation
conversation = [
{
"role": "system",
"content": [
{"type": "text", "text": "You are a helpful multimodal assistant by Liquid AI."}
]
},
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": f"Goal: {goal}\nStep: {instruction}\nRespond with a JSON action containing relevant keys (e.g., action_type, x, y, text, app_name, direction)."}
]
}
]
# Process inputs
inputs = self.processor.apply_chat_template(
conversation,
add_generation_prompt=True,
return_tensors="pt"
).to(self.model.device)
# Generate response
with torch.no_grad():
outputs = self.model.generate(
inputs,
max_new_tokens=128,
do_sample=True,
temperature=0.7,
top_p=0.9
)
response = self.processor.tokenizer.decode(
outputs[0][inputs.shape[1]:],
skip_special_tokens=True
)
# Try to parse as JSON for better formatting
try:
parsed_response = json.loads(response)
return json.dumps(parsed_response, indent=2)
except:
return response
except Exception as e:
logger.error(f"Error generating action: {str(e)}")
return f"β Error generating action: {str(e)}"
@spaces.GPU(duration=90) # 1.5 minutes for chat responses
def chat_with_model(self, message: str, history: List[Dict[str, str]], image: Image.Image = None) -> List[Dict[str, str]]:
"""Chat interface function for Gradio"""
if not self.is_loaded:
return history + [{"role": "user", "content": message}, {"role": "assistant", "content": "β Model not loaded. Please load the model first."}]
if image is None:
return history + [{"role": "user", "content": message}, {"role": "assistant", "content": "β Please upload an Android screenshot image."}]
try:
# Extract goal and instruction from message
if "Goal:" in message and "Step:" in message:
# Parse structured input
lines = message.split('\n')
goal = ""
instruction = ""
for line in lines:
if line.startswith("Goal:"):
goal = line.replace("Goal:", "").strip()
elif line.startswith("Step:"):
instruction = line.replace("Step:", "").strip()
if not goal or not instruction:
return history + [{"role": "user", "content": message}, {"role": "assistant", "content": "β Please provide both Goal and Step in your message."}]
else:
# Treat as general instruction
goal = "Complete the requested action"
instruction = message
# Generate action
response = self.generate_action(image, goal, instruction)
return history + [{"role": "user", "content": message}, {"role": "assistant", "content": response}]
except Exception as e:
logger.error(f"Error in chat: {str(e)}")
return history + [{"role": "user", "content": message}, {"role": "assistant", "content": f"β Error: {str(e)}"}]
# Initialize demo
demo_instance = LOperatorDemo()
# Auto-load the model on startup
def auto_load_model():
"""Auto-load the model when the application starts"""
try:
logger.info("Auto-loading L-Operator model on startup...")
result = demo_instance.load_model()
logger.info(f"Auto-load result: {result}")
return result
except Exception as e:
logger.error(f"Error auto-loading model: {str(e)}")
return f"β Error auto-loading model: {str(e)}"
# Load model automatically (this happens during import)
print("π Auto-loading L-Operator model on startup...")
auto_load_model()
print("β
Model loading completed!")
# Load example episodes
def load_example_episodes():
"""Load example episodes from the extracted data"""
examples = []
try:
# Load episode 13
with open("extracted_episodes_duckdb/episode_13/metadata.json", "r") as f:
episode_13 = json.load(f)
# Load episode 53
with open("extracted_episodes_duckdb/episode_53/metadata.json", "r") as f:
episode_53 = json.load(f)
# Load episode 73
with open("extracted_episodes_duckdb/episode_73/metadata.json", "r") as f:
episode_73 = json.load(f)
# Create examples with simple identifiers
examples = [
[
"extracted_episodes_duckdb/episode_13/screenshots/screenshot_1.png",
"Episode 13: Navigate app interface"
],
[
"extracted_episodes_duckdb/episode_53/screenshots/screenshot_1.png",
"Episode 53: App interaction example"
],
[
"extracted_episodes_duckdb/episode_73/screenshots/screenshot_1.png",
"Episode 73: Device control task"
]
]
except Exception as e:
logger.error(f"Error loading examples: {str(e)}")
examples = []
return examples
# Create Gradio interface
def create_demo():
"""Create the Gradio demo interface"""
with gr.Blocks(
title="L-Operator: Android Device Control Demo",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
}
.chat-container {
height: 600px;
}
"""
) as demo:
gr.Markdown("""
# π€ L-Operator: Android Device Control Demo
**Lightweight Multimodal Android Device Control Agent**
This demo showcases the L-Operator model, a fine-tuned multimodal AI agent based on LiquidAI's LFM2-VL-1.6B model,
optimized for Android device control through visual understanding and action generation.
## π How to Use
1. **Model Loading**: The L-Operator model loads automatically on startup
2. **Upload Screenshot**: Upload an Android device screenshot
3. **Provide Instructions**: Enter your goal and step instructions
4. **Get Actions**: The model will generate JSON actions for Android device control
## π Expected Output Format
The model generates JSON actions in the following format:
```json
{
"action_type": "tap",
"x": 540,
"y": 1200,
"text": "Settings",
"app_name": "com.android.settings",
"confidence": 0.92
}
```
---
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### π€ Model Status")
model_status = gr.Textbox(
label="L-Operator Model",
value="π Loading model on startup...",
interactive=False
)
gr.Markdown("### π± Input")
image_input = gr.Image(
label="Android Screenshot",
type="pil",
height=400,
sources=["upload"]
)
gr.Markdown("### π Instructions")
goal_input = gr.Textbox(
label="Goal",
placeholder="e.g., Open the Settings app and navigate to Display settings",
lines=2
)
step_input = gr.Textbox(
label="Step Instruction",
placeholder="e.g., Tap on the Settings app icon on the home screen",
lines=2
)
generate_btn = gr.Button("π― Generate Action", variant="secondary")
with gr.Column(scale=2):
gr.Markdown("### π¬ Chat Interface")
chat_interface = gr.ChatInterface(
fn=demo_instance.chat_with_model,
additional_inputs=[image_input],
title="L-Operator Chat",
description="Chat with L-Operator using screenshots and text instructions",
examples=load_example_episodes(),
type="messages"
)
gr.Markdown("### π― Action Output")
action_output = gr.JSON(
label="Generated Action",
value={},
height=200
)
# Event handlers
def on_generate_action(image, goal, step):
if not image:
return {"error": "Please upload an image"}
if not goal or not step:
return {"error": "Please provide both goal and step"}
response = demo_instance.generate_action(image, goal, step)
try:
# Try to parse as JSON
parsed = json.loads(response)
return parsed
except:
return {"raw_response": response}
# Update model status on page load
def update_model_status():
if demo_instance.is_loaded:
return "β
L-Operator model loaded and ready!"
else:
return "β Model failed to load. Please check logs."
generate_btn.click(
fn=on_generate_action,
inputs=[image_input, goal_input, step_input],
outputs=action_output
)
# Update model status on page load
demo.load(
fn=update_model_status,
outputs=model_status
)
# Update chat interface when image changes
def update_chat_image(image):
return image
image_input.change(
fn=update_chat_image,
inputs=[image_input],
outputs=[chat_interface.chatbot]
)
gr.Markdown("""
---
## π Model Details
| Property | Value |
|----------|-------|
| **Base Model** | LiquidAI/LFM2-VL-1.6B |
| **Architecture** | LFM2-VL (1.6B parameters) |
| **Fine-tuning** | LoRA (Low-Rank Adaptation) |
| **Training Data** | Android control episodes with screenshots and actions |
## π― Use Cases
- **Mobile App Testing**: Automated UI testing for Android applications
- **Accessibility Applications**: Voice-controlled device navigation
- **Remote Support**: Remote device troubleshooting
- **Development Workflows**: UI/UX testing automation
---
**Made with β€οΈ by Tonic** | [Model on Hugging Face](https://huggingface.co/Tonic/l-android-control)
""")
return demo
# Create and launch the demo
if __name__ == "__main__":
demo = create_demo()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=True,
show_error=True,
ssr_mode=False
) |