Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,538 Bytes
23d4aef 1a36286 23d4aef dae7e9c 23d4aef dae7e9c 23d4aef dae7e9c 23d4aef dae7e9c 23d4aef dae7e9c fda1dca dae7e9c fda1dca dae7e9c 23d4aef dae7e9c 23d4aef dae7e9c 7dfb388 dae7e9c 23d4aef bb7bd59 23d4aef c8e9e6f 23d4aef c8e9e6f b7cacdf c8e9e6f b7cacdf c8e9e6f 81e328a 23d4aef d3f57e1 23d4aef fda1dca 23d4aef dae7e9c fda1dca dae7e9c fda1dca dae7e9c 7dfb388 81e328a 7dfb388 d3f57e1 7dfb388 ff310d7 7dfb388 ff310d7 d3f57e1 ff310d7 7dfb388 dae7e9c 7dfb388 fda1dca 23d4aef fda1dca d3f57e1 23d4aef c8e9e6f 23d4aef c8e9e6f 23d4aef c8e9e6f 23d4aef c8e9e6f b7cacdf c8e9e6f 7dfb388 c8e9e6f 23d4aef c8e9e6f dae7e9c c8e9e6f dae7e9c c8e9e6f b7cacdf 23d4aef 93727c5 c8e9e6f 23d4aef 93727c5 23d4aef dae7e9c 23d4aef dae7e9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import gradio as gr
import torch
from PIL import Image
import json
import os
from transformers import AutoProcessor, AutoModelForImageTextToText
from typing import List, Dict, Any
import logging
import spaces
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Model configuration
MODEL_ID = "Tonic/l-operator"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Get Hugging Face token from environment variable (Spaces secrets)
import os
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
logger.warning("HF_TOKEN not found in environment variables. Model access may be restricted.")
logger.warning("Please set HF_TOKEN in your environment variables or Spaces secrets.")
class LOperatorDemo:
def __init__(self):
self.model = None
self.processor = None
self.is_loaded = False
def load_model(self):
"""Load the L-Operator model and processor with timeout handling"""
try:
import time
start_time = time.time()
logger.info(f"Loading model {MODEL_ID} on device {DEVICE}")
# Check if token is available
if not HF_TOKEN:
return "β HF_TOKEN not found. Please set HF_TOKEN in Spaces secrets."
# Load model with progress logging
logger.info("Downloading and loading model weights...")
self.model = AutoModelForImageTextToText.from_pretrained(
MODEL_ID,
device_map="auto",
torch_dtype=torch.bfloat16 if DEVICE == "cuda" else torch.float32,
trust_remote_code=True
)
# Load processor
logger.info("Loading processor...")
self.processor = AutoProcessor.from_pretrained(
MODEL_ID,
trust_remote_code=True
)
if DEVICE == "cpu":
self.model = self.model.to(DEVICE)
self.is_loaded = True
load_time = time.time() - start_time
logger.info(f"Model loaded successfully in {load_time:.1f} seconds")
return f"β
Model loaded successfully in {load_time:.1f} seconds"
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
return f"β Error loading model: {str(e)} - This may be a custom model requiring special handling"
@spaces.GPU(duration=120) # 2 minutes for action generation
def generate_action(self, image: Image.Image, goal: str, instruction: str) -> str:
"""Generate action based on image and text inputs"""
if not self.is_loaded:
return "β Model not loaded. Please load the model first."
try:
# Convert image to RGB if needed
if image.mode != "RGB":
image = image.convert("RGB")
# Build conversation
conversation = [
{
"role": "system",
"content": [
{"type": "text", "text": "You are a helpful multimodal assistant by Liquid AI."}
]
},
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": f"Goal: {goal}\nStep: {instruction}\nRespond with a JSON action containing relevant keys (e.g., action_type, x, y, text, app_name, direction)."}
]
}
]
# Process inputs
inputs = self.processor.apply_chat_template(
conversation,
add_generation_prompt=True,
return_tensors="pt"
).to(self.model.device)
# Generate response
with torch.no_grad():
outputs = self.model.generate(
inputs,
max_new_tokens=128,
do_sample=True,
temperature=0.7,
top_p=0.9
)
response = self.processor.tokenizer.decode(
outputs[0][inputs.shape[1]:],
skip_special_tokens=True
)
# Try to parse as JSON for better formatting
try:
parsed_response = json.loads(response)
return json.dumps(parsed_response, indent=2)
except:
return response
except Exception as e:
logger.error(f"Error generating action: {str(e)}")
return f"β Error generating action: {str(e)}"
# Initialize demo
demo_instance = LOperatorDemo()
def process_input(image, goal):
"""Process the input and generate action"""
if image is None:
return "β Please upload an Android screenshot image."
if not goal.strip():
return "β Please provide a goal."
if not demo_instance.is_loaded:
return "β Model not loaded. Please wait for it to load automatically."
try:
# Handle different image formats
pil_image = None
if hasattr(image, 'mode'): # PIL Image object
pil_image = image
elif isinstance(image, str) and os.path.exists(image):
# Handle file path (from examples)
pil_image = Image.open(image)
elif hasattr(image, 'name') and os.path.exists(image.name):
# Handle Gradio file object
pil_image = Image.open(image.name)
else:
return "β Invalid image format. Please upload a valid image."
if pil_image is None:
return "β Failed to process image. Please try again."
# Convert image to RGB if needed
if pil_image.mode != "RGB":
pil_image = pil_image.convert("RGB")
# Generate action using goal as both goal and instruction
response = demo_instance.generate_action(pil_image, goal, goal)
return response
except Exception as e:
logger.error(f"Error processing input: {str(e)}")
return f"β Error: {str(e)}"
def load_example_episodes():
"""Load example episodes using PIL to load images directly"""
examples = []
try:
episode_dirs = ["episode_13", "episode_53", "episode_73"]
for episode_dir in episode_dirs:
try:
metadata_path = f"extracted_episodes_duckdb/{episode_dir}/metadata.json"
image_path = f"extracted_episodes_duckdb/{episode_dir}/screenshots/screenshot_1.png"
# Check if both files exist
if os.path.exists(metadata_path) and os.path.exists(image_path):
logger.info(f"Loading example from {episode_dir}")
with open(metadata_path, "r") as f:
metadata = json.load(f)
# Load image directly with PIL
pil_image = Image.open(image_path)
episode_num = episode_dir.split('_')[1]
goal_text = metadata.get('goal', f'Episode {episode_num} example')
examples.append([
pil_image, # Use PIL Image object directly
goal_text # Use the goal text from metadata
])
logger.info(f"Successfully loaded example for Episode {episode_num}")
except Exception as e:
logger.warning(f"Could not load example for {episode_dir}: {str(e)}")
continue
except Exception as e:
logger.error(f"Error loading examples: {str(e)}")
examples = []
logger.info(f"Loaded {len(examples)} examples using PIL")
return examples
# Create Gradio interface
def create_demo():
"""Create the Gradio demo interface using Blocks"""
with gr.Blocks(
title="L-Operator: Android Device Control Demo",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
}
.output-container {
min-height: 200px;
}
"""
) as demo:
gr.Markdown("""
# π€ L-Operator: Android Device Control Demo
**Lightweight Multimodal Android Device Control Agent**
This demo showcases the L-Operator model, a fine-tuned multimodal AI agent based on LiquidAI's LFM2-VL-1.6B model,
optimized for Android device control through visual understanding and action generation.
## π How to Use
1. **Upload Screenshot**: Upload an Android device screenshot
2. **Describe Goal**: Enter what you want to accomplish
3. **Get Actions**: The model will generate JSON actions for Android device control
## π Expected Output Format
The model generates JSON actions in the following format:
```json
{
"action_type": "tap",
"x": 540,
"y": 1200,
"text": "Settings",
"app_name": "com.android.settings",
"confidence": 0.92
}
```
---
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### π± Upload Screenshot")
image_input = gr.Image(
label="Android Screenshot",
type="pil",
height=400
)
gr.Markdown("### π― Goal")
goal_input = gr.Textbox(
label="What would you like to accomplish?",
placeholder="e.g., Open the Settings app and navigate to Display settings",
lines=3
)
# Process button
process_btn = gr.Button("π Generate Action", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("### π Generated Action")
output_text = gr.Textbox(
label="JSON Action Output",
lines=15,
max_lines=20,
interactive=False,
elem_classes=["output-container"]
)
# Connect the process button
process_btn.click(
fn=process_input,
inputs=[image_input, goal_input],
outputs=output_text
)
# Load examples
gr.Markdown("### π Example Episodes")
try:
examples = load_example_episodes()
if examples:
with gr.Row():
for i, (image, goal) in enumerate(examples):
with gr.Column(scale=1):
gr.Markdown(f"**Episode {i+1}**")
example_image = gr.Image(
value=image,
label=f"Example {i+1}",
height=200,
interactive=False
)
example_goal = gr.Textbox(
value=goal,
label="Goal",
lines=2,
interactive=False
)
# Create a button to load this example
load_example_btn = gr.Button(f"Load Example {i+1}", size="sm")
load_example_btn.click(
fn=lambda img, g: (img, g),
inputs=[example_image, example_goal],
outputs=[image_input, goal_input]
)
except Exception as e:
logger.warning(f"Failed to load examples: {str(e)}")
gr.Markdown("β Failed to load examples. Please upload your own screenshot.")
# Load model automatically on startup
def load_model_on_startup():
"""Load model automatically without user feedback"""
if not demo_instance.is_loaded:
logger.info("Loading L-Operator model automatically...")
try:
demo_instance.load_model()
logger.info("Model loaded successfully in background")
except Exception as e:
logger.error(f"Failed to load model: {str(e)}")
# Load model automatically on page load
demo.load(fn=load_model_on_startup)
gr.Markdown("""
---
## π Model Details
| Property | Value |
|----------|-------|
| **Base Model** | LiquidAI/LFM2-VL-1.6B |
| **Architecture** | LFM2-VL (1.6B parameters) |
| **Fine-tuning** | LoRA (Low-Rank Adaptation) |
| **Training Data** | Android control episodes with screenshots and actions |
## π― Use Cases
- **Mobile App Testing**: Automated UI testing for Android applications
- **Accessibility Applications**: Voice-controlled device navigation
- **Remote Support**: Remote device troubleshooting
- **Development Workflows**: UI/UX testing automation
---
**Made with β€οΈ by Tonic** | [Model on Hugging Face](https://huggingface.co/Tonic/l-android-control)
""")
return demo
# Create and launch the demo with optimized settings
if __name__ == "__main__":
try:
logger.info("Creating Gradio demo interface...")
demo = create_demo()
logger.info("Launching Gradio server...")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=False, # Disable debug to reduce startup time
show_error=True,
ssr_mode=False,
max_threads=2, # Limit threads to prevent resource exhaustion
quiet=True # Reduce startup logging noise
)
except Exception as e:
logger.error(f"Failed to launch Gradio app: {str(e)}")
raise |