File size: 14,538 Bytes
23d4aef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a36286
23d4aef
 
 
 
 
 
 
dae7e9c
23d4aef
 
 
 
 
 
 
 
dae7e9c
23d4aef
dae7e9c
 
23d4aef
dae7e9c
23d4aef
 
 
dae7e9c
 
 
fda1dca
 
 
 
 
 
 
 
dae7e9c
fda1dca
 
 
dae7e9c
 
23d4aef
 
dae7e9c
23d4aef
dae7e9c
7dfb388
 
dae7e9c
23d4aef
 
bb7bd59
23d4aef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8e9e6f
23d4aef
 
 
 
c8e9e6f
 
 
 
 
 
 
 
 
 
 
b7cacdf
c8e9e6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7cacdf
c8e9e6f
 
81e328a
 
23d4aef
d3f57e1
23d4aef
fda1dca
23d4aef
dae7e9c
fda1dca
dae7e9c
fda1dca
dae7e9c
7dfb388
 
 
 
81e328a
 
7dfb388
 
 
d3f57e1
 
7dfb388
ff310d7
 
7dfb388
ff310d7
d3f57e1
 
ff310d7
 
7dfb388
dae7e9c
7dfb388
fda1dca
 
23d4aef
 
 
fda1dca
d3f57e1
23d4aef
 
 
 
c8e9e6f
23d4aef
 
 
 
 
 
 
 
c8e9e6f
 
23d4aef
 
 
 
 
 
 
 
 
 
 
 
 
 
c8e9e6f
 
 
23d4aef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8e9e6f
 
 
 
 
b7cacdf
 
c8e9e6f
 
 
 
 
 
7dfb388
c8e9e6f
 
 
 
 
 
 
 
 
 
 
23d4aef
 
c8e9e6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dae7e9c
c8e9e6f
 
 
 
 
 
dae7e9c
c8e9e6f
 
b7cacdf
23d4aef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93727c5
c8e9e6f
23d4aef
93727c5
23d4aef
 
 
 
dae7e9c
23d4aef
dae7e9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import gradio as gr
import torch
from PIL import Image
import json
import os
from transformers import AutoProcessor, AutoModelForImageTextToText
from typing import List, Dict, Any
import logging
import spaces

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Model configuration
MODEL_ID = "Tonic/l-operator"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Get Hugging Face token from environment variable (Spaces secrets)
import os
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
    logger.warning("HF_TOKEN not found in environment variables. Model access may be restricted.")
    logger.warning("Please set HF_TOKEN in your environment variables or Spaces secrets.")

class LOperatorDemo:
    def __init__(self):
        self.model = None
        self.processor = None
        self.is_loaded = False
        
    def load_model(self):
        """Load the L-Operator model and processor with timeout handling"""
        try:
            import time
            start_time = time.time()
            logger.info(f"Loading model {MODEL_ID} on device {DEVICE}")

            # Check if token is available
            if not HF_TOKEN:
                return "❌ HF_TOKEN not found. Please set HF_TOKEN in Spaces secrets."

            # Load model with progress logging
            logger.info("Downloading and loading model weights...")
            self.model = AutoModelForImageTextToText.from_pretrained(
                MODEL_ID,
                device_map="auto",
                torch_dtype=torch.bfloat16 if DEVICE == "cuda" else torch.float32,
                trust_remote_code=True
            )

            # Load processor
            logger.info("Loading processor...")
            self.processor = AutoProcessor.from_pretrained(
                MODEL_ID,
                trust_remote_code=True
            )

            if DEVICE == "cpu":
                self.model = self.model.to(DEVICE)

            self.is_loaded = True
            load_time = time.time() - start_time
            logger.info(f"Model loaded successfully in {load_time:.1f} seconds")
            return f"βœ… Model loaded successfully in {load_time:.1f} seconds"

        except Exception as e:
            logger.error(f"Error loading model: {str(e)}")
            return f"❌ Error loading model: {str(e)} - This may be a custom model requiring special handling"
    
    @spaces.GPU(duration=120)  # 2 minutes for action generation
    def generate_action(self, image: Image.Image, goal: str, instruction: str) -> str:
        """Generate action based on image and text inputs"""
        if not self.is_loaded:
            return "❌ Model not loaded. Please load the model first."
        
        try:
            # Convert image to RGB if needed
            if image.mode != "RGB":
                image = image.convert("RGB")
            
            # Build conversation
            conversation = [
                {
                    "role": "system",
                    "content": [
                        {"type": "text", "text": "You are a helpful multimodal assistant by Liquid AI."}
                    ]
                },
                {
                    "role": "user",
                    "content": [
                        {"type": "image", "image": image},
                        {"type": "text", "text": f"Goal: {goal}\nStep: {instruction}\nRespond with a JSON action containing relevant keys (e.g., action_type, x, y, text, app_name, direction)."}
                    ]
                }
            ]
            
            # Process inputs
            inputs = self.processor.apply_chat_template(
                conversation,
                add_generation_prompt=True,
                return_tensors="pt"
            ).to(self.model.device)
            
            # Generate response
            with torch.no_grad():
                outputs = self.model.generate(
                    inputs,
                    max_new_tokens=128,
                    do_sample=True,
                    temperature=0.7,
                    top_p=0.9
                )
            
            response = self.processor.tokenizer.decode(
                outputs[0][inputs.shape[1]:], 
                skip_special_tokens=True
            )
            
            # Try to parse as JSON for better formatting
            try:
                parsed_response = json.loads(response)
                return json.dumps(parsed_response, indent=2)
            except:
                return response
                
        except Exception as e:
            logger.error(f"Error generating action: {str(e)}")
            return f"❌ Error generating action: {str(e)}"
    


# Initialize demo
demo_instance = LOperatorDemo()

def process_input(image, goal):
    """Process the input and generate action"""
    if image is None:
        return "❌ Please upload an Android screenshot image."
    
    if not goal.strip():
        return "❌ Please provide a goal."
    
    if not demo_instance.is_loaded:
        return "❌ Model not loaded. Please wait for it to load automatically."
    
    try:
        # Handle different image formats
        pil_image = None
        if hasattr(image, 'mode'):  # PIL Image object
            pil_image = image
        elif isinstance(image, str) and os.path.exists(image):
            # Handle file path (from examples)
            pil_image = Image.open(image)
        elif hasattr(image, 'name') and os.path.exists(image.name):
            # Handle Gradio file object
            pil_image = Image.open(image.name)
        else:
            return "❌ Invalid image format. Please upload a valid image."
        
        if pil_image is None:
            return "❌ Failed to process image. Please try again."
        
        # Convert image to RGB if needed
        if pil_image.mode != "RGB":
            pil_image = pil_image.convert("RGB")
        
        # Generate action using goal as both goal and instruction
        response = demo_instance.generate_action(pil_image, goal, goal)
        return response
        
    except Exception as e:
        logger.error(f"Error processing input: {str(e)}")
        return f"❌ Error: {str(e)}"


def load_example_episodes():
    """Load example episodes using PIL to load images directly"""
    examples = []

    try:
        episode_dirs = ["episode_13", "episode_53", "episode_73"]

        for episode_dir in episode_dirs:
            try:
                metadata_path = f"extracted_episodes_duckdb/{episode_dir}/metadata.json"
                image_path = f"extracted_episodes_duckdb/{episode_dir}/screenshots/screenshot_1.png"
                
                # Check if both files exist
                if os.path.exists(metadata_path) and os.path.exists(image_path):
                    logger.info(f"Loading example from {episode_dir}")
                    
                    with open(metadata_path, "r") as f:
                        metadata = json.load(f)
                    
                    # Load image directly with PIL
                    pil_image = Image.open(image_path)
                    
                    episode_num = episode_dir.split('_')[1]
                    goal_text = metadata.get('goal', f'Episode {episode_num} example')
                    
                    examples.append([
                        pil_image,  # Use PIL Image object directly
                        goal_text  # Use the goal text from metadata
                    ])
                    logger.info(f"Successfully loaded example for Episode {episode_num}")
                    
            except Exception as e:
                logger.warning(f"Could not load example for {episode_dir}: {str(e)}")
                continue

    except Exception as e:
        logger.error(f"Error loading examples: {str(e)}")
        examples = []

    logger.info(f"Loaded {len(examples)} examples using PIL")
    return examples

# Create Gradio interface
def create_demo():
    """Create the Gradio demo interface using Blocks"""
    
    with gr.Blocks(
        title="L-Operator: Android Device Control Demo",
        theme=gr.themes.Soft(),
        css="""
        .gradio-container {
            max-width: 1200px !important;
        }
        .output-container {
            min-height: 200px;
        }
        """
    ) as demo:
        
        gr.Markdown("""
        # πŸ€– L-Operator: Android Device Control Demo
        
        **Lightweight Multimodal Android Device Control Agent**
        
        This demo showcases the L-Operator model, a fine-tuned multimodal AI agent based on LiquidAI's LFM2-VL-1.6B model, 
        optimized for Android device control through visual understanding and action generation.
        
        ## πŸš€ How to Use
        
        1. **Upload Screenshot**: Upload an Android device screenshot
        2. **Describe Goal**: Enter what you want to accomplish
        3. **Get Actions**: The model will generate JSON actions for Android device control
        
        ## πŸ“‹ Expected Output Format
        
        The model generates JSON actions in the following format:
        ```json
        {
          "action_type": "tap",
          "x": 540,
          "y": 1200,
          "text": "Settings",
          "app_name": "com.android.settings",
          "confidence": 0.92
        }
        ```
        
        ---
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("### πŸ“± Upload Screenshot")
                image_input = gr.Image(
                    label="Android Screenshot",
                    type="pil",
                    height=400
                )
                
                gr.Markdown("### 🎯 Goal")
                goal_input = gr.Textbox(
                    label="What would you like to accomplish?",
                    placeholder="e.g., Open the Settings app and navigate to Display settings",
                    lines=3
                )
                
                # Process button
                process_btn = gr.Button("πŸš€ Generate Action", variant="primary", size="lg")
                
            with gr.Column(scale=1):
                gr.Markdown("### πŸ“Š Generated Action")
                output_text = gr.Textbox(
                    label="JSON Action Output",
                    lines=15,
                    max_lines=20,
                    interactive=False,
                    elem_classes=["output-container"]
                )
        
        # Connect the process button
        process_btn.click(
            fn=process_input,
            inputs=[image_input, goal_input],
            outputs=output_text
        )
        
        # Load examples
        gr.Markdown("### πŸ“š Example Episodes")
        try:
            examples = load_example_episodes()
            if examples:
                with gr.Row():
                    for i, (image, goal) in enumerate(examples):
                        with gr.Column(scale=1):
                            gr.Markdown(f"**Episode {i+1}**")
                            example_image = gr.Image(
                                value=image,
                                label=f"Example {i+1}",
                                height=200,
                                interactive=False
                            )
                            example_goal = gr.Textbox(
                                value=goal,
                                label="Goal",
                                lines=2,
                                interactive=False
                            )
                            # Create a button to load this example
                            load_example_btn = gr.Button(f"Load Example {i+1}", size="sm")
                            load_example_btn.click(
                                fn=lambda img, g: (img, g),
                                inputs=[example_image, example_goal],
                                outputs=[image_input, goal_input]
                            )
        except Exception as e:
            logger.warning(f"Failed to load examples: {str(e)}")
            gr.Markdown("❌ Failed to load examples. Please upload your own screenshot.")
        
        # Load model automatically on startup
        def load_model_on_startup():
            """Load model automatically without user feedback"""
            if not demo_instance.is_loaded:
                logger.info("Loading L-Operator model automatically...")
                try:
                    demo_instance.load_model()
                    logger.info("Model loaded successfully in background")
                except Exception as e:
                    logger.error(f"Failed to load model: {str(e)}")

        # Load model automatically on page load
        demo.load(fn=load_model_on_startup)
        
        gr.Markdown("""
        ---
        
        ## πŸ“Š Model Details
        
        | Property | Value |
        |----------|-------|
        | **Base Model** | LiquidAI/LFM2-VL-1.6B |
        | **Architecture** | LFM2-VL (1.6B parameters) |
        | **Fine-tuning** | LoRA (Low-Rank Adaptation) |
        | **Training Data** | Android control episodes with screenshots and actions |
        
        ## 🎯 Use Cases
        
        - **Mobile App Testing**: Automated UI testing for Android applications
        - **Accessibility Applications**: Voice-controlled device navigation
        - **Remote Support**: Remote device troubleshooting
        - **Development Workflows**: UI/UX testing automation

        ---
        
        **Made with ❀️ by Tonic** | [Model on Hugging Face](https://huggingface.co/Tonic/l-android-control) 
        """)
    
    return demo

# Create and launch the demo with optimized settings
if __name__ == "__main__":
    try:
        logger.info("Creating Gradio demo interface...")
        demo = create_demo()

        logger.info("Launching Gradio server...")
        demo.launch(
            server_name="0.0.0.0",
            server_port=7860,
            share=False,
            debug=False,  # Disable debug to reduce startup time
            show_error=True,
            ssr_mode=False,
            max_threads=2,  # Limit threads to prevent resource exhaustion
            quiet=True  # Reduce startup logging noise
        )
    except Exception as e:
        logger.error(f"Failed to launch Gradio app: {str(e)}")
        raise