Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,73 +1,39 @@
|
|
| 1 |
-
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
| 2 |
-
import torch
|
| 3 |
import gradio as gr
|
| 4 |
-
import
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
def
|
| 10 |
-
|
| 11 |
-
return text
|
| 12 |
-
return text[:text[:max_len+1].rfind(' ')].strip()
|
| 13 |
-
|
| 14 |
-
def generate_meta(description):
|
| 15 |
-
# Очищаем входное описание
|
| 16 |
-
description = description.strip()
|
| 17 |
-
|
| 18 |
-
# Теперь безопасный f-string без .strip() внутри
|
| 19 |
-
prompt = """
|
| 20 |
-
Create a title and description for product page.
|
| 21 |
-
Product name: Fenix ARB-L18-4000U
|
| 22 |
-
Description: {description}
|
| 23 |
-
|
| 24 |
-
Output format:
|
| 25 |
-
{{"title": "SEO заголовок до 60 символов", "description": "SEO описание до 160 символов"}}
|
| 26 |
-
""".format(description=description)
|
| 27 |
|
| 28 |
inputs = tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True)
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
if json_match:
|
| 44 |
-
json_data = json.loads(json_match.group())
|
| 45 |
-
title = smart_truncate(json_data.get("title", ""), 60)
|
| 46 |
-
desc = smart_truncate(json_data.get("description", ""), 160)
|
| 47 |
-
else:
|
| 48 |
-
clean_text = re.sub(r'\s+', ' ', description)
|
| 49 |
-
title = smart_truncate(f"Аккумулятор Fenix {clean_text}", 60)
|
| 50 |
-
desc = smart_truncate(clean_text, 160)
|
| 51 |
-
|
| 52 |
-
except Exception as e:
|
| 53 |
-
clean_text = re.sub(r'\s+', ' ', description)
|
| 54 |
-
title = smart_truncate(f"Аккумулятор Fenix {clean_text}", 60)
|
| 55 |
-
desc = smart_truncate(clean_text, 160)
|
| 56 |
-
|
| 57 |
-
return title, desc
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
# Интерфейс
|
| 61 |
-
with gr.Blocks() as app:
|
| 62 |
-
gr.Markdown("## Генератор метатегов (контроль длины)")
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
|
| 4 |
+
# Загружаем модель и токенайзер
|
| 5 |
+
model_name = "cointegrated/rut5-base-summarization"
|
| 6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 7 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 8 |
|
| 9 |
+
def generate_meta_description(product_description):
|
| 10 |
+
prompt = f"Сгенерируй meta description (до 160 символов) по следующему описанию товара: {product_description}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
inputs = tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True)
|
| 13 |
+
summary_ids = model.generate(
|
| 14 |
+
inputs["input_ids"],
|
| 15 |
+
max_length=60, # приблизительно ~160 символов на русском
|
| 16 |
+
num_beams=4,
|
| 17 |
+
no_repeat_ngram_size=2,
|
| 18 |
+
early_stopping=True
|
| 19 |
+
)
|
| 20 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 21 |
+
|
| 22 |
+
# обрезаем аккуратно, чтобы не обрывать слова
|
| 23 |
+
if len(summary) > 160:
|
| 24 |
+
truncated = summary[:160]
|
| 25 |
+
last_space = truncated.rfind(' ')
|
| 26 |
+
summary = truncated[:last_space]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
return summary.strip()
|
| 29 |
+
|
| 30 |
+
iface = gr.Interface(
|
| 31 |
+
fn=generate_meta_description,
|
| 32 |
+
inputs=gr.Textbox(label="Описание товара", lines=5, placeholder="Например: Красивое мужское пальто из шерсти..."),
|
| 33 |
+
outputs=gr.Textbox(label="Meta Description (до 160 символов)"),
|
| 34 |
+
title="Meta Description генератор (русский)",
|
| 35 |
+
description="Генерирует логичный и краткий meta description по описанию товара (до 160 символов, без обрезания слов)."
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
if __name__ == "__main__":
|
| 39 |
+
iface.launch()
|