Spaces:
Running
Running
equation
Browse files- index.html +12 -12
index.html
CHANGED
|
@@ -39,7 +39,7 @@
|
|
| 39 |
e.preventDefault();
|
| 40 |
if (!$(this).hasClass('selected')) {
|
| 41 |
|
| 42 |
-
$('.
|
| 43 |
$('.formula-list > a').removeClass('selected');
|
| 44 |
$(this).addClass('selected');
|
| 45 |
var target = $(this).attr('href');
|
|
@@ -420,8 +420,8 @@
|
|
| 420 |
<div class="column container formula">
|
| 421 |
<p>
|
| 422 |
Attackers can design adaptive attacks to try to bypass BEYOND when the attacker knows all the parameters of the model
|
| 423 |
-
and the detection strategy. For an SSL model with a feature extractor
|
| 424 |
-
the classification branch can be formulated as
|
| 425 |
To attack effectively, the adversary must deceive the target model while guaranteeing the label consistency and representation similarity of the SSL model.
|
| 426 |
</div>
|
| 427 |
</div>
|
|
@@ -436,19 +436,19 @@
|
|
| 436 |
<div style="clear: both"></div>
|
| 437 |
</div>
|
| 438 |
<div class="row align-items-center adaptive-loss-formula-content>
|
| 439 |
-
<span class="formula label-loss" style="">
|
| 440 |
$$
|
| 441 |
\displaystyle
|
| 442 |
Loss_{label} = \frac{1}{k} \sum_{i=1}^{k} \mathcal{L}\left(\mathbb{C}\left(W^i(x+\delta) \right), y_t\right)
|
| 443 |
$$
|
| 444 |
</span>
|
| 445 |
-
<span class="formula representation-loss" style="display: none;">
|
| 446 |
$$
|
| 447 |
\displaystyle
|
| 448 |
Loss_{repre} = \frac{1}{k} \sum_{i=1}^{k}\mathcal{S}(\mathbb{R}(W^i(x+\delta)), \mathbb{R}(x+\delta))
|
| 449 |
$$
|
| 450 |
</span>
|
| 451 |
-
<span class="formula total-loss" style="display: none;">
|
| 452 |
$$\displaystyle \mathcal{L}_C(x+\delta, y_t) + Loss_{label} - \alpha \cdot Loss_{repre}$$
|
| 453 |
</span>
|
| 454 |
</div>
|
|
@@ -458,15 +458,15 @@
|
|
| 458 |
|
| 459 |
<div class="columns is-centered">
|
| 460 |
<div class="column container adaptive-loss-formula-content">
|
| 461 |
-
<p class="formula label-loss">
|
| 462 |
-
where
|
| 463 |
</p>
|
| 464 |
-
<p class="formula representation-loss" style="display: none">
|
| 465 |
-
where
|
| 466 |
</p>
|
| 467 |
|
| 468 |
-
<p class="formula total-loss" style="display: none;">
|
| 469 |
-
where
|
| 470 |
</p>
|
| 471 |
</div>
|
| 472 |
</div>
|
|
|
|
| 39 |
e.preventDefault();
|
| 40 |
if (!$(this).hasClass('selected')) {
|
| 41 |
|
| 42 |
+
$('.formula-content').hide(200);
|
| 43 |
$('.formula-list > a').removeClass('selected');
|
| 44 |
$(this).addClass('selected');
|
| 45 |
var target = $(this).attr('href');
|
|
|
|
| 420 |
<div class="column container formula">
|
| 421 |
<p>
|
| 422 |
Attackers can design adaptive attacks to try to bypass BEYOND when the attacker knows all the parameters of the model
|
| 423 |
+
and the detection strategy. For an SSL model with a feature extractor `f`, a projector `h`, and a classification head `g`,
|
| 424 |
+
the classification branch can be formulated as `\mathbb{C} = f\circ g` and the representation branch as `\mathbb{R} = f\circ h`.
|
| 425 |
To attack effectively, the adversary must deceive the target model while guaranteeing the label consistency and representation similarity of the SSL model.
|
| 426 |
</div>
|
| 427 |
</div>
|
|
|
|
| 436 |
<div style="clear: both"></div>
|
| 437 |
</div>
|
| 438 |
<div class="row align-items-center adaptive-loss-formula-content>
|
| 439 |
+
<span class="formula label-loss formula-content" style="">
|
| 440 |
$$
|
| 441 |
\displaystyle
|
| 442 |
Loss_{label} = \frac{1}{k} \sum_{i=1}^{k} \mathcal{L}\left(\mathbb{C}\left(W^i(x+\delta) \right), y_t\right)
|
| 443 |
$$
|
| 444 |
</span>
|
| 445 |
+
<span class="formula representation-loss formula-content" style="display: none;">
|
| 446 |
$$
|
| 447 |
\displaystyle
|
| 448 |
Loss_{repre} = \frac{1}{k} \sum_{i=1}^{k}\mathcal{S}(\mathbb{R}(W^i(x+\delta)), \mathbb{R}(x+\delta))
|
| 449 |
$$
|
| 450 |
</span>
|
| 451 |
+
<span class="formula total-loss formula-content" style="display: none;">
|
| 452 |
$$\displaystyle \mathcal{L}_C(x+\delta, y_t) + Loss_{label} - \alpha \cdot Loss_{repre}$$
|
| 453 |
</span>
|
| 454 |
</div>
|
|
|
|
| 458 |
|
| 459 |
<div class="columns is-centered">
|
| 460 |
<div class="column container adaptive-loss-formula-content">
|
| 461 |
+
<p class="formula label-loss formula-content">
|
| 462 |
+
where `k` represents the number of generated neighbors, `y_t` is the target class, and `\mathcal{L}` is the cross entropy loss function.
|
| 463 |
</p>
|
| 464 |
+
<p class="formula representation-loss formula-content" style="display: none">
|
| 465 |
+
where `k` represents the number of generated neighbors, and `mathcal{S}` is the cosine similarity.
|
| 466 |
</p>
|
| 467 |
|
| 468 |
+
<p class="formula total-loss formula-content" style="display: none;">
|
| 469 |
+
where `\mathcal{L}_C` indicates classifier's loss function, `y_t` is the targeted class, and `\alpha` refers to a hyperparameter.
|
| 470 |
</p>
|
| 471 |
</div>
|
| 472 |
</div>
|