Spaces:
Sleeping
Sleeping
Commit
·
2618489
1
Parent(s):
110358f
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import RobertaForSequenceClassification, AutoTokenizer
|
| 2 |
+
import torch
|
| 3 |
+
import docx2txt
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
import openpyxl
|
| 7 |
+
from openpyxl.styles import Font, Color, PatternFill
|
| 8 |
+
from openpyxl.styles.colors import WHITE
|
| 9 |
+
import gradio as gr
|
| 10 |
+
import underthesea
|
| 11 |
+
|
| 12 |
+
# Load the model and tokenizer
|
| 13 |
+
senti_model = RobertaForSequenceClassification.from_pretrained("wonrax/phobert-base-vietnamese-sentiment")
|
| 14 |
+
senti_tokenizer = AutoTokenizer.from_pretrained("wonrax/phobert-base-vietnamese-sentiment", use_fast=False)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# Word segmented
|
| 19 |
+
def segmentation(sentences):
|
| 20 |
+
segmented_sentences = []
|
| 21 |
+
for sentence in sentences:
|
| 22 |
+
segmented_sentence = underthesea.word_tokenize(sentence)
|
| 23 |
+
segmented_sentences.append(' '.join(segmented_sentence))
|
| 24 |
+
return segmented_sentences
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# File read
|
| 28 |
+
def read_file(docx):
|
| 29 |
+
try:
|
| 30 |
+
text = docx2txt.process(docx)
|
| 31 |
+
lines = text.split('\n')
|
| 32 |
+
lines = [line.strip() for line in lines]
|
| 33 |
+
lines = [line for line in lines if line]
|
| 34 |
+
return lines # add this line
|
| 35 |
+
except Exception as e:
|
| 36 |
+
print(f"Error reading file: {e}")
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
# Define a function to analyze the sentiment of a text
|
| 40 |
+
def analyze(sentence):
|
| 41 |
+
input_ids = torch.tensor([senti_tokenizer.encode(sentence)])
|
| 42 |
+
with torch.no_grad():
|
| 43 |
+
out = senti_model(input_ids)
|
| 44 |
+
results = out.logits.softmax(dim=-1).tolist()
|
| 45 |
+
return results[0]
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def file_analysis(docx):
|
| 49 |
+
# Read the file and segment the sentences
|
| 50 |
+
sentences = read_file(docx)
|
| 51 |
+
segmented_sentences = segmentation(sentences)
|
| 52 |
+
|
| 53 |
+
# Analyze the sentiment of each sentence
|
| 54 |
+
results = []
|
| 55 |
+
for sentence in segmented_sentences:
|
| 56 |
+
results.append(analyze(sentence))
|
| 57 |
+
|
| 58 |
+
return results
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def generate_pie_chart(df):
|
| 62 |
+
# Calculate the average scores
|
| 63 |
+
neg_avg = df['Negative'].mean()
|
| 64 |
+
pos_avg = df['Positive'].mean()
|
| 65 |
+
neu_avg = df['Neutral'].mean()
|
| 66 |
+
|
| 67 |
+
# Create a new DataFrame with the average scores
|
| 68 |
+
avg_df = pd.DataFrame({'Sentiment': ['Negative', 'Positive', 'Neutral'],
|
| 69 |
+
'Score': [neg_avg, pos_avg, neu_avg]})
|
| 70 |
+
|
| 71 |
+
# Set custom colors for the pie chart
|
| 72 |
+
colors = ['#BDBDBD', '#9ACD32', '#87CEFA']
|
| 73 |
+
|
| 74 |
+
# Create a pie chart showing the average scores
|
| 75 |
+
plt.pie(avg_df['Score'], labels=avg_df['Sentiment'], colors=colors, autopct='%1.1f%%')
|
| 76 |
+
plt.title('Average Scores by Sentiment')
|
| 77 |
+
|
| 78 |
+
# Save the pie chart as an image file in the static folder
|
| 79 |
+
pie_chart_name = 'pie_chart.png'
|
| 80 |
+
plt.savefig(pie_chart_name)
|
| 81 |
+
plt.close()
|
| 82 |
+
|
| 83 |
+
return pie_chart_name
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def generate_excel_file(df):
|
| 87 |
+
# Create a new workbook and worksheet
|
| 88 |
+
wb = openpyxl.Workbook()
|
| 89 |
+
ws = wb.active
|
| 90 |
+
|
| 91 |
+
# Add column headers to the worksheet
|
| 92 |
+
headers = ['Negative', 'Positive', 'Neutral', 'Text']
|
| 93 |
+
for col_num, header in enumerate(headers, 1):
|
| 94 |
+
cell = ws.cell(row=1, column=col_num)
|
| 95 |
+
cell.value = header
|
| 96 |
+
cell.font = Font(bold=True)
|
| 97 |
+
|
| 98 |
+
# Set up cell formatting for each sentiment
|
| 99 |
+
fill_dict = {
|
| 100 |
+
'Negative': PatternFill(start_color='BDBDBD', end_color='BDBDBD', fill_type='solid'),
|
| 101 |
+
'Positive': PatternFill(start_color='9ACD32', end_color='9ACD32', fill_type='solid'),
|
| 102 |
+
'Neutral': PatternFill(start_color='87CEFA', end_color='87CEFA', fill_type='solid')
|
| 103 |
+
}
|
| 104 |
+
|
| 105 |
+
# Loop through each row of the input DataFrame and write data to the worksheet
|
| 106 |
+
for row_num, row_data in df.iterrows():
|
| 107 |
+
# Calculate the highest score and corresponding sentiment for this row
|
| 108 |
+
sentiment_cols = ['Negative', 'Positive', 'Neutral']
|
| 109 |
+
scores = [row_data[col] for col in sentiment_cols]
|
| 110 |
+
max_score = max(scores)
|
| 111 |
+
max_index = scores.index(max_score)
|
| 112 |
+
sentiment = sentiment_cols[max_index]
|
| 113 |
+
|
| 114 |
+
# Write the data to the worksheet
|
| 115 |
+
for col_num, col_data in enumerate(row_data, 1):
|
| 116 |
+
cell = ws.cell(row=row_num + 2, column=col_num)
|
| 117 |
+
cell.value = col_data
|
| 118 |
+
if col_num in [1, 2, 3]:
|
| 119 |
+
if col_data == max_score:
|
| 120 |
+
cell.fill = fill_dict[sentiment]
|
| 121 |
+
if col_num == 4:
|
| 122 |
+
fill = fill_dict[sentiment]
|
| 123 |
+
font_color = WHITE if fill.start_color.rgb == 'BDBDBD' else Color('000000')
|
| 124 |
+
cell.fill = fill
|
| 125 |
+
cell.font = Font(color=font_color)
|
| 126 |
+
if col_data == max_score:
|
| 127 |
+
cell.fill = fill_dict[sentiment]
|
| 128 |
+
|
| 129 |
+
# Save the workbook
|
| 130 |
+
excel_file_path = 'result.xlsx'
|
| 131 |
+
wb.save(excel_file_path)
|
| 132 |
+
|
| 133 |
+
return excel_file_path
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def process_file(docx):
|
| 137 |
+
# Perform analysis on the file
|
| 138 |
+
results = file_analysis(docx)
|
| 139 |
+
|
| 140 |
+
# Create a DataFrame from the results
|
| 141 |
+
df = pd.DataFrame(results, columns=['Negative', 'Positive', 'Neutral'])
|
| 142 |
+
df['Text'] = read_file(docx)
|
| 143 |
+
|
| 144 |
+
# Generate the pie chart and excel file
|
| 145 |
+
pie_chart_name = generate_pie_chart(df)
|
| 146 |
+
excel_file_path = generate_excel_file(df)
|
| 147 |
+
|
| 148 |
+
return pie_chart_name, excel_file_path
|
| 149 |
+
|
| 150 |
+
def analyze_file(docx_file):
|
| 151 |
+
# Process the file and generate the output files
|
| 152 |
+
pie_chart_name, excel_file_path = process_file(docx_file.name)
|
| 153 |
+
|
| 154 |
+
# Return the file paths for the pie chart and excel file
|
| 155 |
+
return excel_file_path, pie_chart_name
|
| 156 |
+
|
| 157 |
+
inputs = gr.inputs.File(label="Chọn Tệp Bạn Muốn Phân Tích")
|
| 158 |
+
outputs = [
|
| 159 |
+
gr.outputs.File(label="Kết Quả Phân Tích Excel"),
|
| 160 |
+
gr.outputs.Image(type="filepath",label="Thông Số Phân Tích")
|
| 161 |
+
]
|
| 162 |
+
|
| 163 |
+
interface = gr.Interface(
|
| 164 |
+
fn=analyze_file,
|
| 165 |
+
inputs=inputs,
|
| 166 |
+
outputs=outputs,
|
| 167 |
+
title="Sentiment Analysis",
|
| 168 |
+
allow_flagging="never" # Disable flag button
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
if __name__ == "__main__":
|
| 172 |
+
interface.launch(share=True)
|