Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer | |
| from PIL import Image | |
| from threading import Thread | |
| # Initialize model and processor | |
| model_id = "llava-hf/llava-interleave-qwen-0.5b-hf" | |
| processor = LlavaProcessor.from_pretrained(model_id) | |
| model = LlavaForConditionalGeneration.from_pretrained(model_id).to("cpu") | |
| # Initialize inference clients | |
| client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3") | |
| def llava(inputs): | |
| """Processes an image and text input using Llava.""" | |
| image = Image.open(inputs["files"][0]).convert("RGB") | |
| prompt = f"<|im_start|>user <image>\n{inputs['text']}<|im_end|>" | |
| processed = processor(prompt, image, return_tensors="pt").to("cpu") | |
| return processed | |
| def respond(message, history): | |
| """Generate a response based on text or image input.""" | |
| if "files" in message and message["files"]: | |
| # Handle image + text input | |
| inputs = llava(message) | |
| streamer = TextIteratorStreamer(skip_prompt=True, skip_special_tokens=True) | |
| thread = Thread(target=model.generate, kwargs=dict(inputs=inputs, max_new_tokens=512, streamer=streamer)) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| history[-1][1] = buffer # Update the latest message in history | |
| yield history, history # Yield both chatbot and history for updating | |
| else: | |
| # Handle text-only input | |
| user_message = message["text"] | |
| history.append([user_message, None]) # Add user's message with a placeholder response | |
| # Prepare prompt for the language model | |
| prompt = [{"role": "user", "content": msg[0]} for msg in history if msg[0]] | |
| response = client_gemma.chat_completion(prompt, max_tokens=200) | |
| # Extract response and update history | |
| bot_message = response["choices"][0]["message"]["content"] | |
| history[-1][1] = bot_message # Update the latest message with bot's response | |
| yield history, history # Yield both chatbot and history for updating | |
| def generate_image(prompt): | |
| """Generates an image based on the user prompt.""" | |
| client = InferenceClient("KingNish/Image-Gen-Pro") | |
| return client.predict("Image Generation", None, prompt, api_name="/image_gen_pro") | |
| # Set up Gradio interface | |
| with gr.Blocks() as demo: | |
| chatbot = gr.Chatbot() | |
| with gr.Row(): | |
| with gr.Column(): | |
| text_input = gr.Textbox(placeholder="Enter your message...") | |
| file_input = gr.File(label="Upload an image") | |
| def handle_text(text, history=[]): | |
| """Handle text input and generate responses.""" | |
| return respond({"text": text}, history) | |
| def handle_file_upload(files, history=[]): | |
| """Handle file uploads and generate responses.""" | |
| return respond({"files": files, "text": "Describe this image."}, history) | |
| # Connect components to callbacks | |
| text_input.submit(handle_text, [text_input, chatbot], [chatbot, chatbot]) | |
| file_input.change(handle_file_upload, [file_input, chatbot], [chatbot, chatbot]) | |
| # Launch the Gradio app | |
| demo.launch() |