Spaces:
Sleeping
Sleeping
| import time | |
| from threading import Thread | |
| import gradio as gr | |
| import torch | |
| from PIL import Image | |
| from transformers import AutoProcessor, LlavaForConditionalGeneration, TextIteratorStreamer | |
| # Model Configuration | |
| model_id = "xtuner/llava-llama-3-8b-v1_1-transformers" | |
| print("Loading model...") | |
| processor = AutoProcessor.from_pretrained(model_id) | |
| # Adjusted model loading to use Accelerate's `device_map` | |
| model = LlavaForConditionalGeneration.from_pretrained( | |
| model_id, | |
| torch_dtype=torch.float16, | |
| device_map="auto" # Uses the Accelerate library for efficient memory usage | |
| ) | |
| print("Model loaded successfully!") | |
| PLACEHOLDER = """ | |
| <div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;"> | |
| <img src="https://cdn-uploads.huggingface.co/production/uploads/64ccdc322e592905f922a06e/DDIW0kbWmdOQWwy4XMhwX.png" | |
| style="width: 80%; max-width: 550px; height: auto; opacity: 0.55;"> | |
| <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">LLaVA-Llama-3-8B</h1> | |
| <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;"> | |
| Llava-Llama-3-8B is fine-tuned from Meta-Llama-3-8B-Instruct and CLIP-ViT-Large-patch14-336 | |
| using ShareGPT4V-PT and InternVL-SFT by XTuner. | |
| </p> | |
| </div> | |
| """ | |
| def bot_streaming(message, history): | |
| """Handles message processing with image and text streaming.""" | |
| try: | |
| image = None | |
| # Extract image from message or history | |
| if message["files"]: | |
| image = message["files"][-1]["path"] if isinstance(message["files"][-1], dict) else message["files"][-1] | |
| else: | |
| for hist in history: | |
| if isinstance(hist[0], tuple): | |
| image = hist[0][0] | |
| if not image: | |
| return "Error: Please upload an image for LLaVA to work." | |
| # Prepare inputs | |
| image = Image.open(image) | |
| prompt = f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{message['text']}<|eot_id|>" | |
| inputs = processor(prompt, image, return_tensors="pt").to(model.device, dtype=torch.float16) | |
| # Stream text generation | |
| streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True) | |
| generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False) | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| time.sleep(0.5) # Allow some time for initial generation | |
| # Stream the generated response | |
| for new_text in streamer: | |
| if "<|eot_id|>" in new_text: | |
| new_text = new_text.split("<|eot_id|>")[0] | |
| buffer += new_text | |
| yield buffer | |
| except Exception as e: | |
| yield f"Error: {str(e)}" | |
| # Define Gradio interface components | |
| chatbot = gr.Chatbot(placeholder=PLACEHOLDER, scale=1) | |
| chat_input = gr.MultimodalTextbox( | |
| interactive=True, file_types=["image"], placeholder="Enter message or upload a file...", show_label=False | |
| ) | |
| with gr.Blocks(fill_height=True) as demo: | |
| gr.ChatInterface( | |
| fn=bot_streaming, | |
| title="LLaVA Llama-3-8B", | |
| examples=[ | |
| {"text": "What is on the flower?", "files": ["./bee.jpg"]}, | |
| {"text": "How to make this pastry?", "files": ["./baklava.png"]} | |
| ], | |
| description=( | |
| "Try [LLaVA Llama-3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers). " | |
| "Upload an image and start chatting about it, or simply try one of the examples below. " | |
| "If you don't upload an image, you will receive an error." | |
| ), | |
| stop_btn="Stop Generation", | |
| multimodal=True, | |
| textbox=chat_input, | |
| chatbot=chatbot, | |
| ) | |
| # Launch the Gradio app | |
| demo.queue(api_open=False) | |
| demo.launch(show_api=False, share=False) |