Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,113 +1,103 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
-
import
|
| 4 |
-
import
|
| 5 |
-
from
|
| 6 |
-
from
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
else:
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
if state.pause_detected:
|
| 29 |
-
return gr.Audio(recording=False), state # Stop recording
|
| 30 |
-
return None, state
|
| 31 |
-
|
| 32 |
-
# Generate response based on input type (text or audio)
|
| 33 |
-
def response(input_data, state: AppState, input_type: str):
|
| 34 |
-
if input_type == "text":
|
| 35 |
-
# Ensure text input is handled correctly
|
| 36 |
-
user_message = input_data.strip() # Prevent errors from empty inputs
|
| 37 |
-
if not user_message:
|
| 38 |
-
return "Please enter a valid message.", state
|
| 39 |
-
|
| 40 |
-
state.conversation.append({"role": "user", "content": user_message})
|
| 41 |
-
bot_response = f"Echo: {user_message}" # Simulated bot response
|
| 42 |
-
state.conversation.append({"role": "assistant", "content": bot_response})
|
| 43 |
-
return bot_response, state
|
| 44 |
-
|
| 45 |
-
if input_type == "audio" and state.pause_detected:
|
| 46 |
-
# Convert audio to WAV and store in conversation history
|
| 47 |
-
audio_buffer = io.BytesIO()
|
| 48 |
-
segment = AudioSegment(
|
| 49 |
-
state.stream.tobytes(),
|
| 50 |
-
frame_rate=state.sampling_rate,
|
| 51 |
-
sample_width=state.stream.dtype.itemsize,
|
| 52 |
-
channels=1 if len(state.stream.shape) == 1 else state.stream.shape[1]
|
| 53 |
-
)
|
| 54 |
-
segment.export(audio_buffer, format="wav")
|
| 55 |
-
|
| 56 |
-
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
|
| 57 |
-
f.write(audio_buffer.getvalue())
|
| 58 |
-
state.conversation.append({"role": "user", "content": {"path": f.name, "mime_type": "audio/wav"}})
|
| 59 |
-
|
| 60 |
-
chatbot_response = b"Simulated response audio content"
|
| 61 |
-
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as f:
|
| 62 |
-
f.write(chatbot_response)
|
| 63 |
-
state.conversation.append({"role": "assistant", "content": {"path": f.name, "mime_type": "audio/mp3"}})
|
| 64 |
-
|
| 65 |
-
yield None, state
|
| 66 |
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
#
|
| 70 |
-
def start_recording_user(state: AppState):
|
| 71 |
-
if not state.stopped:
|
| 72 |
-
return gr.Audio(recording=True)
|
| 73 |
-
|
| 74 |
-
# Gradio app setup
|
| 75 |
with gr.Blocks() as demo:
|
|
|
|
| 76 |
with gr.Row():
|
| 77 |
with gr.Column():
|
| 78 |
-
|
| 79 |
-
|
| 80 |
with gr.Column():
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
None, [state, input_audio], cancels=[respond, restart]
|
| 110 |
-
)
|
| 111 |
-
|
| 112 |
-
if __name__ == "__main__":
|
| 113 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from huggingface_hub import InferenceClient
|
| 3 |
+
import json
|
| 4 |
+
import uuid
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from bs4 import BeautifulSoup
|
| 7 |
+
import requests
|
| 8 |
+
import random
|
| 9 |
+
from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer
|
| 10 |
+
from threading import Thread
|
| 11 |
+
import re
|
| 12 |
+
import time
|
| 13 |
+
import torch
|
| 14 |
+
|
| 15 |
+
# Initialize model and processor
|
| 16 |
+
model_id = "llava-hf/llava-interleave-qwen-0.5b-hf"
|
| 17 |
+
processor = LlavaProcessor.from_pretrained(model_id)
|
| 18 |
+
model = LlavaForConditionalGeneration.from_pretrained(model_id).to("cpu")
|
| 19 |
+
|
| 20 |
+
# Initialize inference clients for different models
|
| 21 |
+
client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
|
| 22 |
+
client_mixtral = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
|
| 23 |
+
client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
|
| 24 |
+
client_yi = InferenceClient("01-ai/Yi-1.5-34B-Chat")
|
| 25 |
+
|
| 26 |
+
def search(query):
|
| 27 |
+
"""Performs a Google search and extracts text from the top results."""
|
| 28 |
+
session = requests.Session()
|
| 29 |
+
response = session.get(f"https://www.google.com/search?q={query}",
|
| 30 |
+
headers={"User-Agent": "Mozilla/5.0"})
|
| 31 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
| 32 |
+
results = []
|
| 33 |
+
for result in soup.find_all("div", class_="BNeawe vvjwJb AP7Wnd"):
|
| 34 |
+
text = result.get_text()
|
| 35 |
+
link = result.find_parent("a")["href"]
|
| 36 |
+
results.append(f"{text}: {link}")
|
| 37 |
+
return "\n".join(results[:3])
|
| 38 |
+
|
| 39 |
+
def llava(inputs, history):
|
| 40 |
+
"""Processes an image and text input with Llava."""
|
| 41 |
+
image = Image.open(inputs["files"][0]).convert("RGB")
|
| 42 |
+
prompt = f"<|im_start|>user <image>\n{inputs['text']}<|im_end|>"
|
| 43 |
+
processed = processor(prompt, image, return_tensors="pt").to("cpu")
|
| 44 |
+
return processed
|
| 45 |
+
|
| 46 |
+
def respond(message, history):
|
| 47 |
+
"""Main response function for the chatbot."""
|
| 48 |
+
if "files" in message and message["files"]:
|
| 49 |
+
inputs = llava(message, history)
|
| 50 |
+
streamer = TextIteratorStreamer(skip_prompt=True, skip_special_tokens=True)
|
| 51 |
+
thread = Thread(target=model.generate, kwargs=dict(inputs=inputs, max_new_tokens=512, streamer=streamer))
|
| 52 |
+
thread.start()
|
| 53 |
+
buffer = ""
|
| 54 |
+
for new_text in streamer:
|
| 55 |
+
buffer += new_text
|
| 56 |
+
yield buffer
|
| 57 |
else:
|
| 58 |
+
prompt = [{"role": "user", "content": msg[0]} for msg in history]
|
| 59 |
+
prompt.append({"role": "user", "content": message["text"]})
|
| 60 |
+
response = client_gemma.chat_completion(prompt, max_tokens=200)
|
| 61 |
+
yield response["choices"][0]["message"]["content"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
def generate_image(prompt):
|
| 64 |
+
"""Generates an image using the external model."""
|
| 65 |
+
client = InferenceClient("KingNish/Image-Gen-Pro")
|
| 66 |
+
return client.predict("Image Generation", None, prompt, api_name="/image_gen_pro")
|
| 67 |
|
| 68 |
+
# Set up Gradio interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
with gr.Blocks() as demo:
|
| 70 |
+
chatbot = gr.Chatbot()
|
| 71 |
with gr.Row():
|
| 72 |
with gr.Column():
|
| 73 |
+
text_input = gr.Textbox(placeholder="Enter your message...")
|
| 74 |
+
file_input = gr.File(label="Upload an image")
|
| 75 |
with gr.Column():
|
| 76 |
+
output = gr.Image(label="Generated Image")
|
| 77 |
+
with gr.Row():
|
| 78 |
+
search_button = gr.Button("Search Google")
|
| 79 |
+
image_button = gr.Button("Generate Image")
|
| 80 |
+
examples = [
|
| 81 |
+
{"text": "Who are you?"},
|
| 82 |
+
{"text": "Generate an image of the Eiffel Tower at night."},
|
| 83 |
+
{"text": "Search for the latest trends on YouTube."},
|
| 84 |
+
]
|
| 85 |
+
|
| 86 |
+
def handle_text(text, state):
|
| 87 |
+
response = respond({"text": text}, state)
|
| 88 |
+
return response, state
|
| 89 |
+
|
| 90 |
+
def handle_file_upload(files, state):
|
| 91 |
+
response = respond({"files": files, "text": "Describe this image."}, state)
|
| 92 |
+
return response, state
|
| 93 |
+
|
| 94 |
+
# Connect components to callbacks
|
| 95 |
+
text_input.submit(handle_text, [text_input], [chatbot])
|
| 96 |
+
file_input.change(handle_file_upload, [file_input], [chatbot])
|
| 97 |
+
|
| 98 |
+
# Search button functionality
|
| 99 |
+
search_button.click(lambda query: search(query), [text_input], [chatbot])
|
| 100 |
+
image_button.click(lambda text: generate_image(text), [text_input], [output])
|
| 101 |
+
|
| 102 |
+
# Launch the Gradio interface
|
| 103 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|