Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,94 +1,101 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from
|
| 4 |
-
from
|
| 5 |
-
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
|
| 6 |
-
from llava.conversation import conv_templates
|
| 7 |
-
import copy
|
| 8 |
-
from decord import VideoReader, cpu
|
| 9 |
-
import numpy as np
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
model_name = "llava_qwen"
|
| 14 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
-
device_map = "auto"
|
| 16 |
|
| 17 |
print("Loading model...")
|
| 18 |
-
|
| 19 |
-
model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
print("Model loaded successfully!")
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
|
| 34 |
-
frame_idx = uniform_sampled_frames.tolist()
|
| 35 |
-
frame_time = [i/vr.get_avg_fps() for i in frame_idx]
|
| 36 |
-
frame_time = ",".join([f"{i:.2f}s" for i in frame_time])
|
| 37 |
-
spare_frames = vr.get_batch(frame_idx).asnumpy()
|
| 38 |
-
return spare_frames, frame_time, video_time
|
| 39 |
|
| 40 |
-
def
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
video = [video]
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
|
| 57 |
-
|
| 58 |
-
with torch.no_grad():
|
| 59 |
-
output = model.generate(
|
| 60 |
-
input_ids,
|
| 61 |
-
images=video,
|
| 62 |
-
modalities=["video"],
|
| 63 |
-
do_sample=False,
|
| 64 |
-
temperature=0,
|
| 65 |
-
max_new_tokens=4096,
|
| 66 |
-
)
|
| 67 |
-
|
| 68 |
-
response = tokenizer.batch_decode(output, skip_special_tokens=True)[0].strip()
|
| 69 |
-
return response
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
return response
|
| 76 |
|
| 77 |
-
#
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
)
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
from threading import Thread
|
| 3 |
import gradio as gr
|
| 4 |
import torch
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from transformers import AutoProcessor, LlavaForConditionalGeneration, TextIteratorStreamer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
# Model Configuration
|
| 9 |
+
model_id = "xtuner/llava-llama-3-8b-v1_1-transformers"
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
print("Loading model...")
|
| 12 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 13 |
+
model = LlavaForConditionalGeneration.from_pretrained(
|
| 14 |
+
model_id,
|
| 15 |
+
torch_dtype=torch.float16,
|
| 16 |
+
low_cpu_mem_usage=True
|
| 17 |
+
)
|
| 18 |
+
model.to("cuda" if torch.cuda.is_available() else "cpu")
|
| 19 |
+
model.generation_config.eos_token_id = 128009
|
| 20 |
print("Model loaded successfully!")
|
| 21 |
|
| 22 |
+
PLACEHOLDER = """
|
| 23 |
+
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
|
| 24 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/64ccdc322e592905f922a06e/DDIW0kbWmdOQWwy4XMhwX.png"
|
| 25 |
+
style="width: 80%; max-width: 550px; height: auto; opacity: 0.55;">
|
| 26 |
+
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">LLaVA-Llama-3-8B</h1>
|
| 27 |
+
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">
|
| 28 |
+
Llava-Llama-3-8B is fine-tuned from Meta-Llama-3-8B-Instruct and CLIP-ViT-Large-patch14-336
|
| 29 |
+
using ShareGPT4V-PT and InternVL-SFT by XTuner.
|
| 30 |
+
</p>
|
| 31 |
+
</div>
|
| 32 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
def bot_streaming(message, history):
|
| 35 |
+
"""Handles message processing with image and text streaming."""
|
| 36 |
+
try:
|
| 37 |
+
image = None
|
|
|
|
| 38 |
|
| 39 |
+
# Extract image from message or history
|
| 40 |
+
if message["files"]:
|
| 41 |
+
image = message["files"][-1]["path"] if isinstance(message["files"][-1], dict) else message["files"][-1]
|
| 42 |
+
else:
|
| 43 |
+
for hist in history:
|
| 44 |
+
if isinstance(hist[0], tuple):
|
| 45 |
+
image = hist[0][0]
|
| 46 |
+
|
| 47 |
+
if not image:
|
| 48 |
+
return "Error: Please upload an image for LLaVA to work."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
# Prepare inputs
|
| 51 |
+
image = Image.open(image)
|
| 52 |
+
prompt = f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{message['text']}<|eot_id|>"
|
| 53 |
+
inputs = processor(prompt, image, return_tensors="pt").to(device=model.device, dtype=torch.float16)
|
|
|
|
| 54 |
|
| 55 |
+
# Stream text generation
|
| 56 |
+
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
|
| 57 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False)
|
| 58 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 59 |
+
thread.start()
|
| 60 |
+
|
| 61 |
+
buffer = ""
|
| 62 |
+
time.sleep(0.5) # Allow some time for initial generation
|
| 63 |
+
|
| 64 |
+
# Stream the generated response
|
| 65 |
+
for new_text in streamer:
|
| 66 |
+
if "<|eot_id|>" in new_text:
|
| 67 |
+
new_text = new_text.split("<|eot_id|>")[0]
|
| 68 |
+
buffer += new_text
|
| 69 |
+
yield buffer
|
| 70 |
+
|
| 71 |
+
except Exception as e:
|
| 72 |
+
yield f"Error: {str(e)}"
|
| 73 |
+
|
| 74 |
+
# Define Gradio interface components
|
| 75 |
+
chatbot = gr.Chatbot(placeholder=PLACEHOLDER, scale=1)
|
| 76 |
+
chat_input = gr.MultimodalTextbox(
|
| 77 |
+
interactive=True, file_types=["image"], placeholder="Enter message or upload a file...", show_label=False
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
with gr.Blocks(fill_height=True) as demo:
|
| 81 |
+
gr.ChatInterface(
|
| 82 |
+
fn=bot_streaming,
|
| 83 |
+
title="LLaVA Llama-3-8B",
|
| 84 |
+
examples=[
|
| 85 |
+
{"text": "What is on the flower?", "files": ["./bee.jpg"]},
|
| 86 |
+
{"text": "How to make this pastry?", "files": ["./baklava.png"]}
|
| 87 |
+
],
|
| 88 |
+
description=(
|
| 89 |
+
"Try [LLaVA Llama-3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers). "
|
| 90 |
+
"Upload an image and start chatting about it, or simply try one of the examples below. "
|
| 91 |
+
"If you don't upload an image, you will receive an error."
|
| 92 |
+
),
|
| 93 |
+
stop_btn="Stop Generation",
|
| 94 |
+
multimodal=True,
|
| 95 |
+
textbox=chat_input,
|
| 96 |
+
chatbot=chatbot,
|
| 97 |
)
|
| 98 |
|
| 99 |
+
# Launch the Gradio app
|
| 100 |
+
demo.queue(api_open=False)
|
| 101 |
+
demo.launch(show_api=False, share=False)
|