Spaces:
Runtime error
Runtime error
| from __future__ import annotations | |
| import bz2 | |
| from typing import Literal | |
| import pandas as pd | |
| from app.constants import ( | |
| AMAZONREVIEWS_PATH, | |
| AMAZONREVIEWS_URL, | |
| IMDB50K_PATH, | |
| IMDB50K_URL, | |
| SENTIMENT140_PATH, | |
| SENTIMENT140_URL, | |
| ) | |
| __all__ = ["load_data"] | |
| def load_sentiment140(include_neutral: bool = False) -> tuple[list[str], list[int]]: | |
| """Load the sentiment140 dataset and make it suitable for use. | |
| Args: | |
| include_neutral: Whether to include neutral sentiment | |
| Returns: | |
| Text and label data | |
| Raises: | |
| FileNotFoundError: If the dataset is not found | |
| """ | |
| # Check if the dataset exists | |
| if not SENTIMENT140_PATH.exists(): | |
| msg = ( | |
| f"Sentiment140 dataset not found at: '{SENTIMENT140_PATH}'\n" | |
| "Please download the dataset from:\n" | |
| f"{SENTIMENT140_URL}" | |
| ) | |
| raise FileNotFoundError(msg) | |
| # Load the dataset | |
| data = pd.read_csv( | |
| SENTIMENT140_PATH, | |
| encoding="ISO-8859-1", | |
| names=[ | |
| "target", # 0 = negative, 2 = neutral, 4 = positive | |
| "id", # The id of the tweet | |
| "date", # The date of the tweet | |
| "flag", # The query, NO_QUERY if not present | |
| "user", # The user that tweeted | |
| "text", # The text of the tweet | |
| ], | |
| ) | |
| # Ignore rows with neutral sentiment | |
| if not include_neutral: | |
| data = data[data["target"] != 2] | |
| # Map sentiment values | |
| data["sentiment"] = data["target"].map( | |
| { | |
| 0: 0, # Negative | |
| 4: 1, # Positive | |
| 2: 2, # Neutral | |
| }, | |
| ) | |
| # Return as lists | |
| return data["text"].tolist(), data["sentiment"].tolist() | |
| def load_amazonreviews(merge: bool = True) -> tuple[list[str], list[int]]: | |
| """Load the amazonreviews dataset and make it suitable for use. | |
| Args: | |
| merge: Whether to merge the test and train datasets (otherwise ignore test) | |
| Returns: | |
| Text and label data | |
| Raises: | |
| FileNotFoundError: If the dataset is not found | |
| """ | |
| # Check if the dataset exists | |
| test_exists = AMAZONREVIEWS_PATH[0].exists() or not merge | |
| train_exists = AMAZONREVIEWS_PATH[1].exists() | |
| if not (test_exists and train_exists): | |
| msg = ( | |
| f"Amazonreviews dataset not found at: '{AMAZONREVIEWS_PATH[0]}' and '{AMAZONREVIEWS_PATH[1]}'\n" | |
| "Please download the dataset from:\n" | |
| f"{AMAZONREVIEWS_URL}" | |
| ) | |
| raise FileNotFoundError(msg) | |
| # Load the datasets | |
| with bz2.BZ2File(AMAZONREVIEWS_PATH[1]) as train_file: | |
| train_data = [line.decode("utf-8") for line in train_file] | |
| test_data = [] | |
| if merge: | |
| with bz2.BZ2File(AMAZONREVIEWS_PATH[0]) as test_file: | |
| test_data = [line.decode("utf-8") for line in test_file] | |
| # Merge the datasets | |
| data = train_data + test_data | |
| # Split the data into labels and text | |
| labels, texts = zip(*(line.split(" ", 1) for line in data)) | |
| # Map sentiment values | |
| sentiments = [int(label.split("__label__")[1]) - 1 for label in labels] | |
| # Return as lists | |
| return texts, sentiments | |
| def load_imdb50k() -> tuple[list[str], list[int]]: | |
| """Load the imdb50k dataset and make it suitable for use. | |
| Returns: | |
| Text and label data | |
| Raises: | |
| FileNotFoundError: If the dataset is not found | |
| """ | |
| # Check if the dataset exists | |
| if not IMDB50K_PATH.exists(): | |
| msg = ( | |
| f"IMDB50K dataset not found at: '{IMDB50K_PATH}'\n" | |
| "Please download the dataset from:\n" | |
| f"{IMDB50K_URL}" | |
| ) # fmt: off | |
| raise FileNotFoundError(msg) | |
| # Load the dataset | |
| data = pd.read_csv(IMDB50K_PATH) | |
| # Map sentiment values | |
| data["sentiment"] = data["sentiment"].map( | |
| { | |
| "positive": 1, | |
| "negative": 0, | |
| }, | |
| ) | |
| # Return as lists | |
| return data["review"].tolist(), data["sentiment"].tolist() | |
| def load_data(dataset: Literal["sentiment140", "amazonreviews", "imdb50k"]) -> tuple[list[str], list[int]]: | |
| """Load and preprocess the specified dataset. | |
| Args: | |
| dataset: Dataset to load | |
| Returns: | |
| Text and label data | |
| Raises: | |
| ValueError: If the dataset is not recognized | |
| """ | |
| match dataset: | |
| case "sentiment140": | |
| return load_sentiment140(include_neutral=False) | |
| case "amazonreviews": | |
| return load_amazonreviews(merge=True) | |
| case "imdb50k": | |
| return load_imdb50k() | |
| case _: | |
| msg = f"Unknown dataset: {dataset}" | |
| raise ValueError(msg) | |