Spaces:
Runtime error
Runtime error
Create model in train_model
Browse files- app/cli.py +10 -4
- app/model.py +31 -40
app/cli.py
CHANGED
|
@@ -230,7 +230,7 @@ def train(
|
|
| 230 |
|
| 231 |
from app.constants import CACHE_DIR, MODELS_DIR
|
| 232 |
from app.data import load_data, tokenize
|
| 233 |
-
from app.model import
|
| 234 |
|
| 235 |
model_path = MODELS_DIR / f"{dataset}_tfidf_ft-{max_features}.pkl"
|
| 236 |
if model_path.exists() and not force:
|
|
@@ -258,13 +258,19 @@ def train(
|
|
| 258 |
del text_data
|
| 259 |
|
| 260 |
click.echo("Training model... ")
|
| 261 |
-
model =
|
| 262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
click.echo("Model accuracy: ", nl=False)
|
| 264 |
click.secho(f"{accuracy:.2%}", fg="blue")
|
| 265 |
|
| 266 |
click.echo("Model saved to: ", nl=False)
|
| 267 |
-
joblib.dump(
|
| 268 |
click.secho(str(model_path), fg="blue")
|
| 269 |
|
| 270 |
|
|
|
|
| 230 |
|
| 231 |
from app.constants import CACHE_DIR, MODELS_DIR
|
| 232 |
from app.data import load_data, tokenize
|
| 233 |
+
from app.model import train_model
|
| 234 |
|
| 235 |
model_path = MODELS_DIR / f"{dataset}_tfidf_ft-{max_features}.pkl"
|
| 236 |
if model_path.exists() and not force:
|
|
|
|
| 258 |
del text_data
|
| 259 |
|
| 260 |
click.echo("Training model... ")
|
| 261 |
+
model, accuracy = train_model(
|
| 262 |
+
token_data,
|
| 263 |
+
label_data,
|
| 264 |
+
max_features=max_features,
|
| 265 |
+
folds=cv,
|
| 266 |
+
seed=seed,
|
| 267 |
+
verbose=verbose,
|
| 268 |
+
)
|
| 269 |
click.echo("Model accuracy: ", nl=False)
|
| 270 |
click.secho(f"{accuracy:.2%}", fg="blue")
|
| 271 |
|
| 272 |
click.echo("Model saved to: ", nl=False)
|
| 273 |
+
joblib.dump(model, model_path, compress=3)
|
| 274 |
click.secho(str(model_path), fg="blue")
|
| 275 |
|
| 276 |
|
app/model.py
CHANGED
|
@@ -16,7 +16,7 @@ from app.data import tokenize
|
|
| 16 |
if TYPE_CHECKING:
|
| 17 |
from sklearn.base import BaseEstimator
|
| 18 |
|
| 19 |
-
__all__ = ["
|
| 20 |
|
| 21 |
|
| 22 |
def _identity(x: list[str]) -> list[str]:
|
|
@@ -31,46 +31,10 @@ def _identity(x: list[str]) -> list[str]:
|
|
| 31 |
return x
|
| 32 |
|
| 33 |
|
| 34 |
-
def create_model(
|
| 35 |
-
max_features: int,
|
| 36 |
-
seed: int | None = None,
|
| 37 |
-
verbose: bool = False,
|
| 38 |
-
) -> Pipeline:
|
| 39 |
-
"""Create a sentiment analysis model.
|
| 40 |
-
|
| 41 |
-
Args:
|
| 42 |
-
max_features: Maximum number of features
|
| 43 |
-
seed: Random seed (None for random seed)
|
| 44 |
-
verbose: Whether to output additional information
|
| 45 |
-
|
| 46 |
-
Returns:
|
| 47 |
-
Untrained model
|
| 48 |
-
"""
|
| 49 |
-
return Pipeline(
|
| 50 |
-
[
|
| 51 |
-
(
|
| 52 |
-
"vectorizer",
|
| 53 |
-
TfidfVectorizer(
|
| 54 |
-
max_features=max_features,
|
| 55 |
-
ngram_range=(1, 2),
|
| 56 |
-
# disable text processing
|
| 57 |
-
tokenizer=_identity,
|
| 58 |
-
preprocessor=_identity,
|
| 59 |
-
lowercase=False,
|
| 60 |
-
token_pattern=None,
|
| 61 |
-
),
|
| 62 |
-
),
|
| 63 |
-
("classifier", LogisticRegression(max_iter=1000, random_state=seed)),
|
| 64 |
-
],
|
| 65 |
-
memory=Memory(CACHE_DIR, verbose=0),
|
| 66 |
-
verbose=verbose,
|
| 67 |
-
)
|
| 68 |
-
|
| 69 |
-
|
| 70 |
def train_model(
|
| 71 |
-
model: BaseEstimator,
|
| 72 |
token_data: list[str],
|
| 73 |
label_data: list[int],
|
|
|
|
| 74 |
folds: int = 5,
|
| 75 |
seed: int = 42,
|
| 76 |
verbose: bool = False,
|
|
@@ -81,6 +45,7 @@ def train_model(
|
|
| 81 |
model: Untrained model
|
| 82 |
token_data: Tokenized text data
|
| 83 |
label_data: Label data
|
|
|
|
| 84 |
folds: Number of cross-validation folds
|
| 85 |
seed: Random seed (None for random seed)
|
| 86 |
verbose: Whether to output additional information
|
|
@@ -100,6 +65,32 @@ def train_model(
|
|
| 100 |
"classifier__solver": ["liblinear", "saga"],
|
| 101 |
}
|
| 102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
search = RandomizedSearchCV(
|
| 104 |
model,
|
| 105 |
param_distributions,
|
|
@@ -111,9 +102,9 @@ def train_model(
|
|
| 111 |
verbose=verbose,
|
| 112 |
)
|
| 113 |
|
| 114 |
-
os.environ["PYTHONWARNINGS"] = "ignore"
|
| 115 |
search.fit(text_train, label_train)
|
| 116 |
-
del os.environ["PYTHONWARNINGS"]
|
| 117 |
|
| 118 |
best_model = search.best_estimator_
|
| 119 |
return best_model, best_model.score(text_test, label_test)
|
|
|
|
| 16 |
if TYPE_CHECKING:
|
| 17 |
from sklearn.base import BaseEstimator
|
| 18 |
|
| 19 |
+
__all__ = ["train_model", "evaluate_model", "infer_model"]
|
| 20 |
|
| 21 |
|
| 22 |
def _identity(x: list[str]) -> list[str]:
|
|
|
|
| 31 |
return x
|
| 32 |
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
def train_model(
|
|
|
|
| 35 |
token_data: list[str],
|
| 36 |
label_data: list[int],
|
| 37 |
+
max_features: int,
|
| 38 |
folds: int = 5,
|
| 39 |
seed: int = 42,
|
| 40 |
verbose: bool = False,
|
|
|
|
| 45 |
model: Untrained model
|
| 46 |
token_data: Tokenized text data
|
| 47 |
label_data: Label data
|
| 48 |
+
max_features: Maximum number of features
|
| 49 |
folds: Number of cross-validation folds
|
| 50 |
seed: Random seed (None for random seed)
|
| 51 |
verbose: Whether to output additional information
|
|
|
|
| 65 |
"classifier__solver": ["liblinear", "saga"],
|
| 66 |
}
|
| 67 |
|
| 68 |
+
model = Pipeline(
|
| 69 |
+
[
|
| 70 |
+
(
|
| 71 |
+
"vectorizer",
|
| 72 |
+
TfidfVectorizer(
|
| 73 |
+
max_features=max_features,
|
| 74 |
+
ngram_range=(1, 2),
|
| 75 |
+
# disable text processing
|
| 76 |
+
tokenizer=_identity,
|
| 77 |
+
preprocessor=_identity,
|
| 78 |
+
lowercase=False,
|
| 79 |
+
token_pattern=None,
|
| 80 |
+
),
|
| 81 |
+
),
|
| 82 |
+
(
|
| 83 |
+
"classifier",
|
| 84 |
+
LogisticRegression(
|
| 85 |
+
max_iter=1000,
|
| 86 |
+
random_state=None if seed == -1 else seed,
|
| 87 |
+
),
|
| 88 |
+
),
|
| 89 |
+
],
|
| 90 |
+
memory=Memory(CACHE_DIR, verbose=0),
|
| 91 |
+
verbose=verbose,
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
search = RandomizedSearchCV(
|
| 95 |
model,
|
| 96 |
param_distributions,
|
|
|
|
| 102 |
verbose=verbose,
|
| 103 |
)
|
| 104 |
|
| 105 |
+
# os.environ["PYTHONWARNINGS"] = "ignore"
|
| 106 |
search.fit(text_train, label_train)
|
| 107 |
+
# del os.environ["PYTHONWARNINGS"]
|
| 108 |
|
| 109 |
best_model = search.best_estimator_
|
| 110 |
return best_model, best_model.score(text_test, label_test)
|