Spaces:
Runtime error
Runtime error
Chunked serialization
Browse files- Makefile +0 -20
- app/cli.py +37 -21
- app/utils.py +44 -0
Makefile
DELETED
|
@@ -1,20 +0,0 @@
|
|
| 1 |
-
#!/usr/bin/make -f
|
| 2 |
-
|
| 3 |
-
default: install
|
| 4 |
-
|
| 5 |
-
install:
|
| 6 |
-
@poetry install --only main
|
| 7 |
-
@poetry run spacy download en_core_web_sm
|
| 8 |
-
|
| 9 |
-
install-dev:
|
| 10 |
-
@poetry self add poetry-plugin-export
|
| 11 |
-
@poetry install
|
| 12 |
-
|
| 13 |
-
requirements:
|
| 14 |
-
@poetry export -f requirements.txt --output requirements.txt --without dev
|
| 15 |
-
@poetry export -f requirements.txt --output requirements-dev.txt
|
| 16 |
-
|
| 17 |
-
lint:
|
| 18 |
-
@poetry run pre-commit run --all-files
|
| 19 |
-
|
| 20 |
-
.PHONY: install install-dev requirements gradio lint run
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/cli.py
CHANGED
|
@@ -136,28 +136,34 @@ def evaluate(
|
|
| 136 |
from app.constants import CACHE_DIR
|
| 137 |
from app.data import load_data, tokenize
|
| 138 |
from app.model import evaluate_model
|
|
|
|
| 139 |
|
| 140 |
cached_data_path = CACHE_DIR / f"{dataset}_tokenized.pkl"
|
| 141 |
use_cached_data = False
|
| 142 |
if cached_data_path.exists():
|
| 143 |
use_cached_data = click.confirm(f"Found existing tokenized data for '{dataset}'. Use it?", default=True)
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
if use_cached_data:
|
| 146 |
click.echo("Loading cached data... ", nl=False)
|
| 147 |
-
token_data
|
|
|
|
| 148 |
click.echo(DONE_STR)
|
| 149 |
else:
|
| 150 |
-
click.echo("Loading dataset... ", nl=False)
|
| 151 |
-
text_data, label_data = load_data(dataset)
|
| 152 |
-
click.echo(DONE_STR)
|
| 153 |
-
|
| 154 |
click.echo("Tokenizing data... ", nl=False)
|
| 155 |
token_data = tokenize(text_data, batch_size=batch_size, n_jobs=processes, show_progress=True)
|
| 156 |
-
joblib.dump((token_data, label_data), cached_data_path, compress=3)
|
| 157 |
click.echo(DONE_STR)
|
| 158 |
|
| 159 |
-
|
| 160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
click.echo("Loading model... ", nl=False)
|
| 163 |
model = joblib.load(model_path)
|
|
@@ -221,9 +227,9 @@ def evaluate(
|
|
| 221 |
help="Overwrite the model file if it already exists",
|
| 222 |
)
|
| 223 |
@click.option(
|
| 224 |
-
"--
|
| 225 |
is_flag=True,
|
| 226 |
-
help="
|
| 227 |
)
|
| 228 |
@click.option(
|
| 229 |
"--verbose",
|
|
@@ -238,7 +244,7 @@ def train(
|
|
| 238 |
processes: int,
|
| 239 |
seed: int,
|
| 240 |
overwrite: bool,
|
| 241 |
-
|
| 242 |
verbose: bool,
|
| 243 |
) -> None:
|
| 244 |
"""Train the model on the provided dataset"""
|
|
@@ -249,6 +255,7 @@ def train(
|
|
| 249 |
from app.constants import CACHE_DIR, MODELS_DIR
|
| 250 |
from app.data import load_data, tokenize
|
| 251 |
from app.model import train_model
|
|
|
|
| 252 |
|
| 253 |
model_path = MODELS_DIR / f"{dataset}_tfidf_ft-{max_features}.pkl"
|
| 254 |
if model_path.exists() and not overwrite:
|
|
@@ -256,25 +263,34 @@ def train(
|
|
| 256 |
|
| 257 |
cached_data_path = CACHE_DIR / f"{dataset}_tokenized.pkl"
|
| 258 |
use_cached_data = False
|
| 259 |
-
|
| 260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
|
| 262 |
if use_cached_data:
|
| 263 |
click.echo("Loading cached data... ", nl=False)
|
| 264 |
-
token_data
|
|
|
|
| 265 |
click.echo(DONE_STR)
|
| 266 |
else:
|
| 267 |
-
click.echo("Loading dataset... ", nl=False)
|
| 268 |
-
text_data, label_data = load_data(dataset)
|
| 269 |
-
click.echo(DONE_STR)
|
| 270 |
-
|
| 271 |
click.echo("Tokenizing data... ", nl=False)
|
| 272 |
token_data = tokenize(text_data, batch_size=batch_size, n_jobs=processes, show_progress=True)
|
| 273 |
-
joblib.dump((token_data, label_data), cached_data_path, compress=3)
|
| 274 |
click.echo(DONE_STR)
|
| 275 |
|
| 276 |
-
|
| 277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
|
| 279 |
click.echo("Training model... ")
|
| 280 |
model, accuracy = train_model(
|
|
|
|
| 136 |
from app.constants import CACHE_DIR
|
| 137 |
from app.data import load_data, tokenize
|
| 138 |
from app.model import evaluate_model
|
| 139 |
+
from app.utils import deserialize, serialize
|
| 140 |
|
| 141 |
cached_data_path = CACHE_DIR / f"{dataset}_tokenized.pkl"
|
| 142 |
use_cached_data = False
|
| 143 |
if cached_data_path.exists():
|
| 144 |
use_cached_data = click.confirm(f"Found existing tokenized data for '{dataset}'. Use it?", default=True)
|
| 145 |
|
| 146 |
+
click.echo("Loading dataset... ", nl=False)
|
| 147 |
+
text_data, label_data = load_data(dataset)
|
| 148 |
+
click.echo(DONE_STR)
|
| 149 |
+
|
| 150 |
if use_cached_data:
|
| 151 |
click.echo("Loading cached data... ", nl=False)
|
| 152 |
+
# token_data = joblib.load(cached_data_path)
|
| 153 |
+
token_data = deserialize(cached_data_path)
|
| 154 |
click.echo(DONE_STR)
|
| 155 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
click.echo("Tokenizing data... ", nl=False)
|
| 157 |
token_data = tokenize(text_data, batch_size=batch_size, n_jobs=processes, show_progress=True)
|
|
|
|
| 158 |
click.echo(DONE_STR)
|
| 159 |
|
| 160 |
+
click.echo("Caching tokenized data... ", nl=False)
|
| 161 |
+
# joblib.dump(token_data, cached_data_path, compress=3)
|
| 162 |
+
serialize(token_data, cached_data_path)
|
| 163 |
+
click.echo(DONE_STR)
|
| 164 |
+
|
| 165 |
+
del text_data
|
| 166 |
+
gc.collect()
|
| 167 |
|
| 168 |
click.echo("Loading model... ", nl=False)
|
| 169 |
model = joblib.load(model_path)
|
|
|
|
| 227 |
help="Overwrite the model file if it already exists",
|
| 228 |
)
|
| 229 |
@click.option(
|
| 230 |
+
"--force-cache",
|
| 231 |
is_flag=True,
|
| 232 |
+
help="Always use the cached tokenized data (if available)",
|
| 233 |
)
|
| 234 |
@click.option(
|
| 235 |
"--verbose",
|
|
|
|
| 244 |
processes: int,
|
| 245 |
seed: int,
|
| 246 |
overwrite: bool,
|
| 247 |
+
force_cache: bool,
|
| 248 |
verbose: bool,
|
| 249 |
) -> None:
|
| 250 |
"""Train the model on the provided dataset"""
|
|
|
|
| 255 |
from app.constants import CACHE_DIR, MODELS_DIR
|
| 256 |
from app.data import load_data, tokenize
|
| 257 |
from app.model import train_model
|
| 258 |
+
from app.utils import deserialize, serialize
|
| 259 |
|
| 260 |
model_path = MODELS_DIR / f"{dataset}_tfidf_ft-{max_features}.pkl"
|
| 261 |
if model_path.exists() and not overwrite:
|
|
|
|
| 263 |
|
| 264 |
cached_data_path = CACHE_DIR / f"{dataset}_tokenized.pkl"
|
| 265 |
use_cached_data = False
|
| 266 |
+
|
| 267 |
+
if cached_data_path.exists():
|
| 268 |
+
use_cached_data = force_cache or click.confirm(
|
| 269 |
+
f"Found existing tokenized data for '{dataset}'. Use it?",
|
| 270 |
+
default=True,
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
click.echo("Loading dataset... ", nl=False)
|
| 274 |
+
text_data, label_data = load_data(dataset)
|
| 275 |
+
click.echo(DONE_STR)
|
| 276 |
|
| 277 |
if use_cached_data:
|
| 278 |
click.echo("Loading cached data... ", nl=False)
|
| 279 |
+
# token_data = joblib.load(cached_data_path)
|
| 280 |
+
token_data = deserialize(cached_data_path)
|
| 281 |
click.echo(DONE_STR)
|
| 282 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
click.echo("Tokenizing data... ", nl=False)
|
| 284 |
token_data = tokenize(text_data, batch_size=batch_size, n_jobs=processes, show_progress=True)
|
|
|
|
| 285 |
click.echo(DONE_STR)
|
| 286 |
|
| 287 |
+
click.echo("Caching tokenized data... ", nl=False)
|
| 288 |
+
# joblib.dump(token_data, cached_data_path, compress=3)
|
| 289 |
+
serialize(token_data, cached_data_path)
|
| 290 |
+
click.echo(DONE_STR)
|
| 291 |
+
|
| 292 |
+
del text_data
|
| 293 |
+
gc.collect()
|
| 294 |
|
| 295 |
click.echo("Training model... ")
|
| 296 |
model, accuracy = train_model(
|
app/utils.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
from typing import TYPE_CHECKING
|
| 4 |
+
|
| 5 |
+
import joblib
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
|
| 8 |
+
if TYPE_CHECKING:
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
|
| 11 |
+
__all__ = ["serialize", "deserialize"]
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def serialize(data: list[list[str]], path: Path, max_size: int = 400) -> None:
|
| 15 |
+
"""Serialize data to a file
|
| 16 |
+
|
| 17 |
+
Args:
|
| 18 |
+
data: The data to serialize
|
| 19 |
+
path: The path to save the serialized data
|
| 20 |
+
max_size: The maximum size a chunk can be (in elements)
|
| 21 |
+
"""
|
| 22 |
+
# first file is path, next chunks have ".1", ".2", etc. appended
|
| 23 |
+
for i, chunk in enumerate(tqdm([data[i : i + max_size] for i in range(0, len(data), max_size)])):
|
| 24 |
+
fd = path.with_suffix(f".{i}.pkl" if i else ".pkl")
|
| 25 |
+
with fd.open("wb") as f:
|
| 26 |
+
joblib.dump(chunk, f, compress=3)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def deserialize(path: Path) -> list[list[str]]:
|
| 30 |
+
"""Deserialize data from a file
|
| 31 |
+
|
| 32 |
+
Args:
|
| 33 |
+
path: The path to the serialized data
|
| 34 |
+
|
| 35 |
+
Returns:
|
| 36 |
+
The deserialized data
|
| 37 |
+
"""
|
| 38 |
+
data = []
|
| 39 |
+
i = 0
|
| 40 |
+
while (fd := path.with_suffix(f".{i}.pkl" if i else ".pkl")).exists():
|
| 41 |
+
with fd.open("rb") as f:
|
| 42 |
+
data.extend(joblib.load(f))
|
| 43 |
+
i += 1
|
| 44 |
+
return data
|