Spaces:
Runtime error
Runtime error
Add evaluate command
Browse files- app/cli.py +50 -5
app/cli.py
CHANGED
|
@@ -76,6 +76,51 @@ def predict(model_path: Path, text: list[str]) -> None:
|
|
| 76 |
click.echo(sentiment)
|
| 77 |
|
| 78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
@cli.command()
|
| 80 |
@click.option(
|
| 81 |
"--dataset",
|
|
@@ -120,13 +165,14 @@ def train(
|
|
| 120 |
import joblib
|
| 121 |
|
| 122 |
from app.constants import MODELS_DIR
|
| 123 |
-
from app.
|
|
|
|
| 124 |
|
| 125 |
model_path = MODELS_DIR / f"{dataset}_tfidf_ft-{max_features}.pkl"
|
| 126 |
if model_path.exists() and not force:
|
| 127 |
click.confirm(f"Model file '{model_path}' already exists. Overwrite?", abort=True)
|
| 128 |
|
| 129 |
-
click.echo("
|
| 130 |
text_data, label_data = load_data(dataset)
|
| 131 |
click.echo(DONE_STR)
|
| 132 |
|
|
@@ -134,9 +180,8 @@ def train(
|
|
| 134 |
model = create_model(max_features, seed=None if seed == -1 else seed, verbose=True)
|
| 135 |
click.echo(DONE_STR)
|
| 136 |
|
| 137 |
-
# click.echo("Training model... ", nl=False)
|
| 138 |
click.echo("Training model... ")
|
| 139 |
-
accuracy
|
| 140 |
click.echo("Model accuracy: ", nl=False)
|
| 141 |
click.secho(f"{accuracy:.2%}", fg="blue")
|
| 142 |
|
|
@@ -145,7 +190,7 @@ def train(
|
|
| 145 |
click.secho(str(model_path), fg="blue")
|
| 146 |
|
| 147 |
click.echo("Evaluating model... ", nl=False)
|
| 148 |
-
acc_mean, acc_std = evaluate_model(model,
|
| 149 |
click.secho(f"{acc_mean:.2%} ± {acc_std:.2%}", fg="blue")
|
| 150 |
|
| 151 |
|
|
|
|
| 76 |
click.echo(sentiment)
|
| 77 |
|
| 78 |
|
| 79 |
+
@cli.command()
|
| 80 |
+
@click.option(
|
| 81 |
+
"--dataset",
|
| 82 |
+
required=True,
|
| 83 |
+
help="Dataset to train the model on",
|
| 84 |
+
type=click.Choice(["sentiment140", "amazonreviews", "imdb50k"]),
|
| 85 |
+
)
|
| 86 |
+
@click.option(
|
| 87 |
+
"--model",
|
| 88 |
+
"model_path",
|
| 89 |
+
required=True,
|
| 90 |
+
help="Path to the trained model",
|
| 91 |
+
type=click.Path(exists=True, file_okay=True, dir_okay=False, readable=True, resolve_path=True, path_type=Path),
|
| 92 |
+
)
|
| 93 |
+
@click.option(
|
| 94 |
+
"--cv",
|
| 95 |
+
default=5,
|
| 96 |
+
help="Number of cross-validation folds",
|
| 97 |
+
show_default=True,
|
| 98 |
+
type=click.IntRange(1, 50),
|
| 99 |
+
)
|
| 100 |
+
def evaluate(
|
| 101 |
+
dataset: Literal["sentiment140", "amazonreviews", "imdb50k"],
|
| 102 |
+
model_path: Path,
|
| 103 |
+
cv: int,
|
| 104 |
+
) -> None:
|
| 105 |
+
"""Evaluate the model on the test dataset"""
|
| 106 |
+
import joblib
|
| 107 |
+
|
| 108 |
+
from app.data import load_data
|
| 109 |
+
from app.model import evaluate_model
|
| 110 |
+
|
| 111 |
+
click.echo("Loading dataset... ", nl=False)
|
| 112 |
+
text_data, label_data = load_data(dataset)
|
| 113 |
+
click.echo(DONE_STR)
|
| 114 |
+
|
| 115 |
+
click.echo("Loading model... ", nl=False)
|
| 116 |
+
model = joblib.load(model_path)
|
| 117 |
+
click.echo(DONE_STR)
|
| 118 |
+
|
| 119 |
+
click.echo("Evaluating model... ", nl=False)
|
| 120 |
+
acc_mean, acc_std = evaluate_model(model, text_data, label_data, folds=cv)
|
| 121 |
+
click.secho(f"{acc_mean:.2%} ± {acc_std:.2%}", fg="blue")
|
| 122 |
+
|
| 123 |
+
|
| 124 |
@cli.command()
|
| 125 |
@click.option(
|
| 126 |
"--dataset",
|
|
|
|
| 165 |
import joblib
|
| 166 |
|
| 167 |
from app.constants import MODELS_DIR
|
| 168 |
+
from app.data import load_data
|
| 169 |
+
from app.model import create_model, evaluate_model, train_model
|
| 170 |
|
| 171 |
model_path = MODELS_DIR / f"{dataset}_tfidf_ft-{max_features}.pkl"
|
| 172 |
if model_path.exists() and not force:
|
| 173 |
click.confirm(f"Model file '{model_path}' already exists. Overwrite?", abort=True)
|
| 174 |
|
| 175 |
+
click.echo("Loading dataset... ", nl=False)
|
| 176 |
text_data, label_data = load_data(dataset)
|
| 177 |
click.echo(DONE_STR)
|
| 178 |
|
|
|
|
| 180 |
model = create_model(max_features, seed=None if seed == -1 else seed, verbose=True)
|
| 181 |
click.echo(DONE_STR)
|
| 182 |
|
|
|
|
| 183 |
click.echo("Training model... ")
|
| 184 |
+
accuracy = train_model(model, text_data, label_data)
|
| 185 |
click.echo("Model accuracy: ", nl=False)
|
| 186 |
click.secho(f"{accuracy:.2%}", fg="blue")
|
| 187 |
|
|
|
|
| 190 |
click.secho(str(model_path), fg="blue")
|
| 191 |
|
| 192 |
click.echo("Evaluating model... ", nl=False)
|
| 193 |
+
acc_mean, acc_std = evaluate_model(model, text_data, label_data, folds=cv)
|
| 194 |
click.secho(f"{acc_mean:.2%} ± {acc_std:.2%}", fg="blue")
|
| 195 |
|
| 196 |
|