Spaces:
Runtime error
Runtime error
Move common logic to function
Browse files- app/cli.py +70 -95
app/cli.py
CHANGED
|
@@ -1,15 +1,75 @@
|
|
|
|
|
|
|
|
| 1 |
from __future__ import annotations
|
| 2 |
|
|
|
|
|
|
|
| 3 |
from pathlib import Path
|
| 4 |
from typing import Literal
|
| 5 |
|
| 6 |
import click
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
__all__ = ["cli_wrapper"]
|
| 9 |
|
| 10 |
DONE_STR = click.style("DONE", fg="green")
|
| 11 |
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
@click.group()
|
| 14 |
def cli() -> None: ...
|
| 15 |
|
|
@@ -29,8 +89,6 @@ def cli() -> None: ...
|
|
| 29 |
)
|
| 30 |
def gui(model_path: Path, share: bool) -> None:
|
| 31 |
"""Launch the Gradio GUI"""
|
| 32 |
-
import os
|
| 33 |
-
|
| 34 |
from app.gui import launch_gui
|
| 35 |
|
| 36 |
os.environ["MODEL_PATH"] = model_path.as_posix()
|
|
@@ -51,14 +109,12 @@ def predict(model_path: Path, text: list[str]) -> None:
|
|
| 51 |
|
| 52 |
Note: Piped input takes precedence over the text argument
|
| 53 |
"""
|
| 54 |
-
import sys
|
| 55 |
-
|
| 56 |
-
import joblib
|
| 57 |
-
|
| 58 |
from app.model import infer_model
|
| 59 |
|
|
|
|
| 60 |
text = " ".join(text).strip()
|
| 61 |
if not sys.stdin.isatty():
|
|
|
|
| 62 |
piped_text = sys.stdin.read().strip()
|
| 63 |
text = piped_text or text
|
| 64 |
|
|
@@ -72,7 +128,6 @@ def predict(model_path: Path, text: list[str]) -> None:
|
|
| 72 |
|
| 73 |
click.echo("Performing sentiment analysis... ", nl=False)
|
| 74 |
prediction = infer_model(model, [text])[0]
|
| 75 |
-
# prediction = model.predict([text])[0]
|
| 76 |
if prediction == 0:
|
| 77 |
sentiment = click.style("NEGATIVE", fg="red")
|
| 78 |
elif prediction == 1:
|
|
@@ -101,7 +156,7 @@ def predict(model_path: Path, text: list[str]) -> None:
|
|
| 101 |
default=5,
|
| 102 |
help="Number of cross-validation folds",
|
| 103 |
show_default=True,
|
| 104 |
-
type=click.IntRange(
|
| 105 |
)
|
| 106 |
@click.option(
|
| 107 |
"--token-batch-size",
|
|
@@ -136,64 +191,20 @@ def evaluate(
|
|
| 136 |
force_cache: bool,
|
| 137 |
) -> None:
|
| 138 |
"""Evaluate the model on the the specified dataset"""
|
| 139 |
-
import gc
|
| 140 |
-
|
| 141 |
-
import joblib
|
| 142 |
-
import pandas as pd
|
| 143 |
-
|
| 144 |
-
from app.constants import TOKENIZER_CACHE_DIR
|
| 145 |
-
from app.data import load_data, tokenize
|
| 146 |
from app.model import evaluate_model
|
| 147 |
-
from app.utils import deserialize, serialize
|
| 148 |
-
|
| 149 |
-
token_cache_path = TOKENIZER_CACHE_DIR / f"{dataset}_tokenized.pkl"
|
| 150 |
-
label_cache_path = TOKENIZER_CACHE_DIR / f"{dataset}_labels.pkl"
|
| 151 |
-
use_cached_data = False
|
| 152 |
|
| 153 |
-
|
| 154 |
-
use_cached_data = force_cache or click.confirm(
|
| 155 |
-
f"Found existing tokenized data for '{dataset}'. Use it?",
|
| 156 |
-
default=True,
|
| 157 |
-
)
|
| 158 |
-
|
| 159 |
-
if use_cached_data:
|
| 160 |
-
click.echo("Loading cached data... ", nl=False)
|
| 161 |
-
token_data = pd.Series(deserialize(token_cache_path))
|
| 162 |
-
label_data = joblib.load(label_cache_path)
|
| 163 |
-
click.echo(DONE_STR)
|
| 164 |
-
else:
|
| 165 |
-
click.echo("Loading dataset... ", nl=False)
|
| 166 |
-
text_data, label_data = load_data(dataset)
|
| 167 |
-
click.echo(DONE_STR)
|
| 168 |
-
|
| 169 |
-
click.echo("Tokenizing data... ")
|
| 170 |
-
token_data = tokenize(text_data, batch_size=token_batch_size, n_jobs=token_jobs, show_progress=True)
|
| 171 |
-
serialize(token_data, token_cache_path, show_progress=True)
|
| 172 |
-
joblib.dump(label_data, label_cache_path, compress=3)
|
| 173 |
-
|
| 174 |
-
del text_data
|
| 175 |
-
gc.collect()
|
| 176 |
-
|
| 177 |
-
click.echo("Size of vocabulary: ", nl=False)
|
| 178 |
-
vocab = token_data.explode().value_counts()
|
| 179 |
-
click.secho(str(len(vocab)), fg="blue")
|
| 180 |
|
| 181 |
click.echo("Loading model... ", nl=False)
|
| 182 |
model = joblib.load(model_path)
|
| 183 |
click.echo(DONE_STR)
|
| 184 |
|
| 185 |
-
if cv == 1:
|
| 186 |
-
click.echo("Evaluating model... ", nl=False)
|
| 187 |
-
acc = model.score(token_data, label_data)
|
| 188 |
-
click.secho(f"{acc:.2%}", fg="blue")
|
| 189 |
-
return
|
| 190 |
-
|
| 191 |
click.echo("Evaluating model... ")
|
| 192 |
acc_mean, acc_std = evaluate_model(
|
| 193 |
model,
|
| 194 |
token_data,
|
| 195 |
label_data,
|
| 196 |
-
|
| 197 |
n_jobs=eval_jobs,
|
| 198 |
)
|
| 199 |
click.secho(f"{acc_mean:.2%} ± {acc_std:.2%}", fg="blue")
|
|
@@ -230,7 +241,7 @@ def evaluate(
|
|
| 230 |
default=5,
|
| 231 |
help="Number of cross-validation folds",
|
| 232 |
show_default=True,
|
| 233 |
-
type=click.IntRange(
|
| 234 |
)
|
| 235 |
@click.option(
|
| 236 |
"--token-batch-size",
|
|
@@ -281,51 +292,14 @@ def train(
|
|
| 281 |
force_cache: bool,
|
| 282 |
) -> None:
|
| 283 |
"""Train the model on the provided dataset"""
|
| 284 |
-
import
|
| 285 |
-
|
| 286 |
-
import joblib
|
| 287 |
-
import pandas as pd
|
| 288 |
-
|
| 289 |
-
from app.constants import MODEL_DIR, TOKENIZER_CACHE_DIR
|
| 290 |
-
from app.data import load_data, tokenize
|
| 291 |
from app.model import train_model
|
| 292 |
-
from app.utils import deserialize, serialize
|
| 293 |
|
| 294 |
model_path = MODEL_DIR / f"{dataset}_{vectorizer}_ft{max_features}.pkl"
|
| 295 |
if model_path.exists() and not overwrite:
|
| 296 |
click.confirm(f"Model file '{model_path}' already exists. Overwrite?", abort=True)
|
| 297 |
|
| 298 |
-
|
| 299 |
-
label_cache_path = TOKENIZER_CACHE_DIR / f"{dataset}_labels.pkl"
|
| 300 |
-
use_cached_data = False
|
| 301 |
-
|
| 302 |
-
if token_cache_path.exists():
|
| 303 |
-
use_cached_data = force_cache or click.confirm(
|
| 304 |
-
f"Found existing tokenized data for '{dataset}'. Use it?",
|
| 305 |
-
default=True,
|
| 306 |
-
)
|
| 307 |
-
|
| 308 |
-
if use_cached_data:
|
| 309 |
-
click.echo("Loading cached data... ", nl=False)
|
| 310 |
-
token_data = pd.Series(deserialize(token_cache_path))
|
| 311 |
-
label_data = joblib.load(label_cache_path)
|
| 312 |
-
click.echo(DONE_STR)
|
| 313 |
-
else:
|
| 314 |
-
click.echo("Loading dataset... ", nl=False)
|
| 315 |
-
text_data, label_data = load_data(dataset)
|
| 316 |
-
click.echo(DONE_STR)
|
| 317 |
-
|
| 318 |
-
click.echo("Tokenizing data... ")
|
| 319 |
-
token_data = tokenize(text_data, batch_size=token_batch_size, n_jobs=token_jobs, show_progress=True)
|
| 320 |
-
serialize(token_data, token_cache_path, show_progress=True)
|
| 321 |
-
joblib.dump(label_data, label_cache_path, compress=3)
|
| 322 |
-
|
| 323 |
-
del text_data
|
| 324 |
-
gc.collect()
|
| 325 |
-
|
| 326 |
-
click.echo("Size of vocabulary: ", nl=False)
|
| 327 |
-
vocab = token_data.explode().value_counts()
|
| 328 |
-
click.secho(str(len(vocab)), fg="blue")
|
| 329 |
|
| 330 |
click.echo("Training model... ")
|
| 331 |
model, accuracy = train_model(
|
|
@@ -334,10 +308,11 @@ def train(
|
|
| 334 |
vectorizer=vectorizer,
|
| 335 |
max_features=max_features,
|
| 336 |
min_df=min_df,
|
| 337 |
-
|
| 338 |
n_jobs=train_jobs,
|
| 339 |
seed=seed,
|
| 340 |
)
|
|
|
|
| 341 |
click.echo("Model accuracy: ", nl=False)
|
| 342 |
click.secho(f"{accuracy:.2%}", fg="blue")
|
| 343 |
|
|
|
|
| 1 |
+
"""CLI using Click."""
|
| 2 |
+
|
| 3 |
from __future__ import annotations
|
| 4 |
|
| 5 |
+
import os
|
| 6 |
+
import sys
|
| 7 |
from pathlib import Path
|
| 8 |
from typing import Literal
|
| 9 |
|
| 10 |
import click
|
| 11 |
+
import joblib
|
| 12 |
+
import pandas as pd
|
| 13 |
+
|
| 14 |
+
from app.constants import TOKENIZER_CACHE_DIR
|
| 15 |
|
| 16 |
__all__ = ["cli_wrapper"]
|
| 17 |
|
| 18 |
DONE_STR = click.style("DONE", fg="green")
|
| 19 |
|
| 20 |
|
| 21 |
+
def _load_dataset(
|
| 22 |
+
dataset: str,
|
| 23 |
+
batch_size: int = 512,
|
| 24 |
+
n_jobs: int = 4,
|
| 25 |
+
force_cache: bool = False,
|
| 26 |
+
) -> tuple[pd.Series, pd.Series]:
|
| 27 |
+
"""Helper function to load and tokenize the dataset or use cached data if available.
|
| 28 |
+
|
| 29 |
+
Args:
|
| 30 |
+
dataset: Name of the dataset
|
| 31 |
+
batch_size: Batch size for tokenization
|
| 32 |
+
n_jobs: Number of parallel jobs
|
| 33 |
+
force_cache: Whether to force using the cached data
|
| 34 |
+
|
| 35 |
+
Returns:
|
| 36 |
+
Tokenized text data and label data
|
| 37 |
+
"""
|
| 38 |
+
from app.data import load_data, tokenize
|
| 39 |
+
from app.utils import deserialize, serialize
|
| 40 |
+
|
| 41 |
+
token_cache_path = TOKENIZER_CACHE_DIR / f"{dataset}_tokenized.pkl"
|
| 42 |
+
label_cache_path = TOKENIZER_CACHE_DIR / f"{dataset}_labels.pkl"
|
| 43 |
+
use_cached_data = False
|
| 44 |
+
|
| 45 |
+
if token_cache_path.exists() and label_cache_path.exists():
|
| 46 |
+
use_cached_data = force_cache or click.confirm(
|
| 47 |
+
f"Found existing tokenized data for '{dataset}'. Use it?",
|
| 48 |
+
default=True,
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
if use_cached_data:
|
| 52 |
+
click.echo("Loading cached data... ", nl=False)
|
| 53 |
+
token_data = pd.Series(deserialize(token_cache_path))
|
| 54 |
+
label_data = joblib.load(label_cache_path)
|
| 55 |
+
click.echo(DONE_STR)
|
| 56 |
+
else:
|
| 57 |
+
click.echo("Loading dataset... ", nl=False)
|
| 58 |
+
text_data, label_data = load_data(dataset)
|
| 59 |
+
click.echo(DONE_STR)
|
| 60 |
+
|
| 61 |
+
click.echo("Tokenizing data... ")
|
| 62 |
+
token_data = tokenize(text_data, batch_size=batch_size, n_jobs=n_jobs, show_progress=True)
|
| 63 |
+
serialize(token_data, token_cache_path, show_progress=True)
|
| 64 |
+
joblib.dump(label_data, label_cache_path, compress=3)
|
| 65 |
+
|
| 66 |
+
click.echo("Dataset vocabulary size: ", nl=False)
|
| 67 |
+
vocab = token_data.explode().value_counts()
|
| 68 |
+
click.secho(str(len(vocab)), fg="blue")
|
| 69 |
+
|
| 70 |
+
return token_data, label_data
|
| 71 |
+
|
| 72 |
+
|
| 73 |
@click.group()
|
| 74 |
def cli() -> None: ...
|
| 75 |
|
|
|
|
| 89 |
)
|
| 90 |
def gui(model_path: Path, share: bool) -> None:
|
| 91 |
"""Launch the Gradio GUI"""
|
|
|
|
|
|
|
| 92 |
from app.gui import launch_gui
|
| 93 |
|
| 94 |
os.environ["MODEL_PATH"] = model_path.as_posix()
|
|
|
|
| 109 |
|
| 110 |
Note: Piped input takes precedence over the text argument
|
| 111 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
from app.model import infer_model
|
| 113 |
|
| 114 |
+
# Combine the text arguments into a single string
|
| 115 |
text = " ".join(text).strip()
|
| 116 |
if not sys.stdin.isatty():
|
| 117 |
+
# If there is piped input, read it
|
| 118 |
piped_text = sys.stdin.read().strip()
|
| 119 |
text = piped_text or text
|
| 120 |
|
|
|
|
| 128 |
|
| 129 |
click.echo("Performing sentiment analysis... ", nl=False)
|
| 130 |
prediction = infer_model(model, [text])[0]
|
|
|
|
| 131 |
if prediction == 0:
|
| 132 |
sentiment = click.style("NEGATIVE", fg="red")
|
| 133 |
elif prediction == 1:
|
|
|
|
| 156 |
default=5,
|
| 157 |
help="Number of cross-validation folds",
|
| 158 |
show_default=True,
|
| 159 |
+
type=click.IntRange(2, 50),
|
| 160 |
)
|
| 161 |
@click.option(
|
| 162 |
"--token-batch-size",
|
|
|
|
| 191 |
force_cache: bool,
|
| 192 |
) -> None:
|
| 193 |
"""Evaluate the model on the the specified dataset"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
from app.model import evaluate_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
+
token_data, label_data = _load_dataset(dataset, token_batch_size, token_jobs, force_cache)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
click.echo("Loading model... ", nl=False)
|
| 199 |
model = joblib.load(model_path)
|
| 200 |
click.echo(DONE_STR)
|
| 201 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
click.echo("Evaluating model... ")
|
| 203 |
acc_mean, acc_std = evaluate_model(
|
| 204 |
model,
|
| 205 |
token_data,
|
| 206 |
label_data,
|
| 207 |
+
cv=cv,
|
| 208 |
n_jobs=eval_jobs,
|
| 209 |
)
|
| 210 |
click.secho(f"{acc_mean:.2%} ± {acc_std:.2%}", fg="blue")
|
|
|
|
| 241 |
default=5,
|
| 242 |
help="Number of cross-validation folds",
|
| 243 |
show_default=True,
|
| 244 |
+
type=click.IntRange(2, 50),
|
| 245 |
)
|
| 246 |
@click.option(
|
| 247 |
"--token-batch-size",
|
|
|
|
| 292 |
force_cache: bool,
|
| 293 |
) -> None:
|
| 294 |
"""Train the model on the provided dataset"""
|
| 295 |
+
from app.constants import MODEL_DIR
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
from app.model import train_model
|
|
|
|
| 297 |
|
| 298 |
model_path = MODEL_DIR / f"{dataset}_{vectorizer}_ft{max_features}.pkl"
|
| 299 |
if model_path.exists() and not overwrite:
|
| 300 |
click.confirm(f"Model file '{model_path}' already exists. Overwrite?", abort=True)
|
| 301 |
|
| 302 |
+
token_data, label_data = _load_dataset(dataset, token_batch_size, token_jobs, force_cache)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
|
| 304 |
click.echo("Training model... ")
|
| 305 |
model, accuracy = train_model(
|
|
|
|
| 308 |
vectorizer=vectorizer,
|
| 309 |
max_features=max_features,
|
| 310 |
min_df=min_df,
|
| 311 |
+
cv=cv,
|
| 312 |
n_jobs=train_jobs,
|
| 313 |
seed=seed,
|
| 314 |
)
|
| 315 |
+
|
| 316 |
click.echo("Model accuracy: ", nl=False)
|
| 317 |
click.secho(f"{accuracy:.2%}", fg="blue")
|
| 318 |
|