Spaces:
Runtime error
Runtime error
Add slang map
Browse files- .gitattributes +3 -1
- .gitignore +2 -2
- README.md +3 -0
- app/constants.py +3 -0
- app/data.py +100 -3
- data/slang.json +0 -0
.gitattributes
CHANGED
|
@@ -5,6 +5,7 @@
|
|
| 5 |
# Hide from GitHub's language detection
|
| 6 |
*.yaml linguist-documentation
|
| 7 |
*.toml linguist-documentation
|
|
|
|
| 8 |
|
| 9 |
# Remove assets from github statistics
|
| 10 |
*.yaml linguist-vendored
|
|
@@ -12,10 +13,11 @@
|
|
| 12 |
|
| 13 |
# Set the language for these files to ensure GitHub doesn't show the comments as errors
|
| 14 |
.vscode/*.json linguist-language=JSON5
|
|
|
|
| 15 |
|
| 16 |
# Do not try and merge these files
|
| 17 |
poetry.lock -diff
|
| 18 |
-
*.
|
| 19 |
|
| 20 |
# LFS
|
| 21 |
models/** filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 5 |
# Hide from GitHub's language detection
|
| 6 |
*.yaml linguist-documentation
|
| 7 |
*.toml linguist-documentation
|
| 8 |
+
*.json linguist-documentation
|
| 9 |
|
| 10 |
# Remove assets from github statistics
|
| 11 |
*.yaml linguist-vendored
|
|
|
|
| 13 |
|
| 14 |
# Set the language for these files to ensure GitHub doesn't show the comments as errors
|
| 15 |
.vscode/*.json linguist-language=JSON5
|
| 16 |
+
data/* binary
|
| 17 |
|
| 18 |
# Do not try and merge these files
|
| 19 |
poetry.lock -diff
|
| 20 |
+
*.pkl -diff
|
| 21 |
|
| 22 |
# LFS
|
| 23 |
models/** filter=lfs diff=lfs merge=lfs -text
|
.gitignore
CHANGED
|
@@ -194,6 +194,6 @@ pyrightconfig.json
|
|
| 194 |
# End of https://www.toptal.com/developers/gitignore/api/visualstudiocode,python
|
| 195 |
|
| 196 |
# Custom
|
| 197 |
-
data
|
| 198 |
-
|
| 199 |
flagged/
|
|
|
|
| 194 |
# End of https://www.toptal.com/developers/gitignore/api/visualstudiocode,python
|
| 195 |
|
| 196 |
# Custom
|
| 197 |
+
data/*
|
| 198 |
+
!data/slang.json
|
| 199 |
flagged/
|
README.md
CHANGED
|
@@ -138,6 +138,9 @@ python -m app evaluate --help
|
|
| 138 |
| imdb50k | `data/imdb50k.csv` | | [IMDB Movie Reviews](https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews) |
|
| 139 |
| test | `data/test.csv` | required for `evaluate` | [Multiclass Sentiment Analysis](https://huggingface.co/datasets/Sp1786/multiclass-sentiment-analysis-dataset) |
|
| 140 |
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
### Vectorizers
|
| 143 |
| Option | Description | When to Use |
|
|
|
|
| 138 |
| imdb50k | `data/imdb50k.csv` | | [IMDB Movie Reviews](https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews) |
|
| 139 |
| test | `data/test.csv` | required for `evaluate` | [Multiclass Sentiment Analysis](https://huggingface.co/datasets/Sp1786/multiclass-sentiment-analysis-dataset) |
|
| 140 |
|
| 141 |
+
#### Used for text preprocessing
|
| 142 |
+
- [Slang Map](Https://www.kaggle.com/code/nmaguette/up-to-date-list-of-slangs-for-text-preprocessing)
|
| 143 |
+
|
| 144 |
|
| 145 |
### Vectorizers
|
| 146 |
| Option | Description | When to Use |
|
app/constants.py
CHANGED
|
@@ -19,6 +19,9 @@ IMDB50K_URL = "https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-5
|
|
| 19 |
TEST_DATASET_PATH = DATA_DIR / "test.csv"
|
| 20 |
TEST_DATASET_URL = "https://huggingface.co/datasets/Sp1786/multiclass-sentiment-analysis-dataset"
|
| 21 |
|
|
|
|
|
|
|
|
|
|
| 22 |
CACHE_DIR.mkdir(exist_ok=True, parents=True)
|
| 23 |
DATA_DIR.mkdir(exist_ok=True, parents=True)
|
| 24 |
MODEL_DIR.mkdir(exist_ok=True, parents=True)
|
|
|
|
| 19 |
TEST_DATASET_PATH = DATA_DIR / "test.csv"
|
| 20 |
TEST_DATASET_URL = "https://huggingface.co/datasets/Sp1786/multiclass-sentiment-analysis-dataset"
|
| 21 |
|
| 22 |
+
SLANGMAP_PATH = DATA_DIR / "slang.json"
|
| 23 |
+
SLANGMAP_URL = "Https://www.kaggle.com/code/nmaguette/up-to-date-list-of-slangs-for-text-preprocessing"
|
| 24 |
+
|
| 25 |
CACHE_DIR.mkdir(exist_ok=True, parents=True)
|
| 26 |
DATA_DIR.mkdir(exist_ok=True, parents=True)
|
| 27 |
MODEL_DIR.mkdir(exist_ok=True, parents=True)
|
app/data.py
CHANGED
|
@@ -1,8 +1,12 @@
|
|
| 1 |
from __future__ import annotations
|
| 2 |
|
| 3 |
import bz2
|
|
|
|
|
|
|
|
|
|
| 4 |
from typing import TYPE_CHECKING, Literal, Sequence
|
| 5 |
|
|
|
|
| 6 |
import pandas as pd
|
| 7 |
import spacy
|
| 8 |
from tqdm import tqdm
|
|
@@ -14,11 +18,15 @@ from app.constants import (
|
|
| 14 |
IMDB50K_URL,
|
| 15 |
SENTIMENT140_PATH,
|
| 16 |
SENTIMENT140_URL,
|
|
|
|
|
|
|
| 17 |
TEST_DATASET_PATH,
|
| 18 |
TEST_DATASET_URL,
|
| 19 |
)
|
| 20 |
|
| 21 |
if TYPE_CHECKING:
|
|
|
|
|
|
|
| 22 |
from spacy.tokens import Doc
|
| 23 |
|
| 24 |
__all__ = ["load_data", "tokenize"]
|
|
@@ -35,6 +43,81 @@ except OSError:
|
|
| 35 |
nlp = spacy.load("en_core_web_sm")
|
| 36 |
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
def _lemmatize(doc: Doc, threshold: int = 2) -> Sequence[str]:
|
| 39 |
"""Lemmatize the provided text using spaCy.
|
| 40 |
|
|
@@ -46,12 +129,15 @@ def _lemmatize(doc: Doc, threshold: int = 2) -> Sequence[str]:
|
|
| 46 |
Sequence of lemmatized tokens
|
| 47 |
"""
|
| 48 |
return [
|
| 49 |
-
|
| 50 |
for token in doc
|
| 51 |
if not token.is_stop # Ignore stop words
|
| 52 |
and not token.is_punct # Ignore punctuation
|
|
|
|
|
|
|
|
|
|
| 53 |
and not token.is_alpha # Ignore non-alphabetic tokens
|
| 54 |
-
and not (len(token.lemma_) < threshold) # Ignore short tokens
|
| 55 |
]
|
| 56 |
|
| 57 |
|
|
@@ -74,14 +160,25 @@ def tokenize(
|
|
| 74 |
Returns:
|
| 75 |
Tokenized text data
|
| 76 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
return pd.Series(
|
| 78 |
[
|
| 79 |
_lemmatize(doc, character_threshold)
|
| 80 |
for doc in tqdm(
|
| 81 |
nlp.pipe(text_data, batch_size=batch_size, n_process=n_jobs, disable=["parser", "ner", "tok2vec"]),
|
| 82 |
total=len(text_data),
|
| 83 |
-
|
| 84 |
unit="doc",
|
|
|
|
| 85 |
)
|
| 86 |
],
|
| 87 |
)
|
|
|
|
| 1 |
from __future__ import annotations
|
| 2 |
|
| 3 |
import bz2
|
| 4 |
+
import json
|
| 5 |
+
import re
|
| 6 |
+
from functools import lru_cache
|
| 7 |
from typing import TYPE_CHECKING, Literal, Sequence
|
| 8 |
|
| 9 |
+
import emoji
|
| 10 |
import pandas as pd
|
| 11 |
import spacy
|
| 12 |
from tqdm import tqdm
|
|
|
|
| 18 |
IMDB50K_URL,
|
| 19 |
SENTIMENT140_PATH,
|
| 20 |
SENTIMENT140_URL,
|
| 21 |
+
SLANGMAP_PATH,
|
| 22 |
+
SLANGMAP_URL,
|
| 23 |
TEST_DATASET_PATH,
|
| 24 |
TEST_DATASET_URL,
|
| 25 |
)
|
| 26 |
|
| 27 |
if TYPE_CHECKING:
|
| 28 |
+
from re import Pattern
|
| 29 |
+
|
| 30 |
from spacy.tokens import Doc
|
| 31 |
|
| 32 |
__all__ = ["load_data", "tokenize"]
|
|
|
|
| 43 |
nlp = spacy.load("en_core_web_sm")
|
| 44 |
|
| 45 |
|
| 46 |
+
@lru_cache(maxsize=1)
|
| 47 |
+
def slang() -> tuple[Pattern, dict[str, str]]:
|
| 48 |
+
"""Compile a re pattern for slang terms.
|
| 49 |
+
|
| 50 |
+
Returns:
|
| 51 |
+
Slang pattern and mapping
|
| 52 |
+
|
| 53 |
+
Raises:
|
| 54 |
+
FileNotFoundError: If the file is not found
|
| 55 |
+
"""
|
| 56 |
+
if not SLANGMAP_PATH.exists():
|
| 57 |
+
# msg = f"Missing slang mapping file: {SLANG_PATH}"
|
| 58 |
+
msg = (
|
| 59 |
+
f"Slang mapping file not found at: '{SLANGMAP_PATH}'\n"
|
| 60 |
+
"Please download the file from:\n"
|
| 61 |
+
f"{SLANGMAP_URL}"
|
| 62 |
+
) # fmt: off
|
| 63 |
+
raise FileNotFoundError(msg)
|
| 64 |
+
|
| 65 |
+
with SLANGMAP_PATH.open() as f:
|
| 66 |
+
mapping = json.load(f)
|
| 67 |
+
|
| 68 |
+
return re.compile(r"\b(" + "|".join(map(re.escape, mapping.keys())) + r")\b"), mapping
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def _clean(text: str) -> str:
|
| 72 |
+
"""Perform basic text cleaning.
|
| 73 |
+
|
| 74 |
+
Args:
|
| 75 |
+
text: Text to clean
|
| 76 |
+
|
| 77 |
+
Returns:
|
| 78 |
+
Cleaned text
|
| 79 |
+
"""
|
| 80 |
+
# Make text lowercase
|
| 81 |
+
text = text.lower()
|
| 82 |
+
|
| 83 |
+
# Remove HTML tags
|
| 84 |
+
text = re.sub(r"<[^>]*>", "", text)
|
| 85 |
+
|
| 86 |
+
# Map slang terms
|
| 87 |
+
slang_pattern, slang_mapping = slang()
|
| 88 |
+
text = slang_pattern.sub(lambda x: slang_mapping[x.group()], text)
|
| 89 |
+
|
| 90 |
+
# Remove acronyms and abbreviations
|
| 91 |
+
# text = re.sub(r"(?:[a-z]\.){2,}", "", text)
|
| 92 |
+
text = re.sub(r"(?:[a-z]\.?)(?:[a-z]\.)", "", text)
|
| 93 |
+
|
| 94 |
+
# Remove honorifics
|
| 95 |
+
text = re.sub(r"\b(?:mr|mrs|ms|dr|prof|sr|jr)\.?\b", "", text)
|
| 96 |
+
|
| 97 |
+
# Remove year abbreviations
|
| 98 |
+
text = re.sub(r"\b(?:\d{3}0|\d0)s?\b", "", text)
|
| 99 |
+
|
| 100 |
+
# Remove hashtags
|
| 101 |
+
text = re.sub(r"#[^\s]+", "", text)
|
| 102 |
+
|
| 103 |
+
# Replace mentions with a generic tag
|
| 104 |
+
text = re.sub(r"@[^\s]+", "user", text)
|
| 105 |
+
|
| 106 |
+
# Replace X/Y with X or Y
|
| 107 |
+
text = re.sub(r"\b([a-z]+)[//]([a-z]+)\b", r"\1 or \2", text)
|
| 108 |
+
|
| 109 |
+
# Convert emojis to text
|
| 110 |
+
text = emoji.demojize(text, delimiters=("emoji_", ""))
|
| 111 |
+
|
| 112 |
+
# Remove special characters
|
| 113 |
+
text = re.sub(r"[^a-z0-9\s]", "", text)
|
| 114 |
+
|
| 115 |
+
# EXTRA: imdb50k specific cleaning
|
| 116 |
+
text = re.sub(r"mst3k", "", text) # Very common acronym for Mystery Science Theater 3000
|
| 117 |
+
|
| 118 |
+
return text.strip()
|
| 119 |
+
|
| 120 |
+
|
| 121 |
def _lemmatize(doc: Doc, threshold: int = 2) -> Sequence[str]:
|
| 122 |
"""Lemmatize the provided text using spaCy.
|
| 123 |
|
|
|
|
| 129 |
Sequence of lemmatized tokens
|
| 130 |
"""
|
| 131 |
return [
|
| 132 |
+
tok
|
| 133 |
for token in doc
|
| 134 |
if not token.is_stop # Ignore stop words
|
| 135 |
and not token.is_punct # Ignore punctuation
|
| 136 |
+
and not token.like_email # Ignore email addresses
|
| 137 |
+
and not token.like_url # Ignore URLs
|
| 138 |
+
and not token.like_num # Ignore numbers
|
| 139 |
and not token.is_alpha # Ignore non-alphabetic tokens
|
| 140 |
+
and not (len(tok := token.lemma_.lower().strip()) < threshold) # Ignore short tokens
|
| 141 |
]
|
| 142 |
|
| 143 |
|
|
|
|
| 160 |
Returns:
|
| 161 |
Tokenized text data
|
| 162 |
"""
|
| 163 |
+
text_data = [
|
| 164 |
+
_clean(text)
|
| 165 |
+
for text in tqdm(
|
| 166 |
+
text_data,
|
| 167 |
+
desc="Cleaning",
|
| 168 |
+
unit="doc",
|
| 169 |
+
disable=not show_progress,
|
| 170 |
+
)
|
| 171 |
+
]
|
| 172 |
+
|
| 173 |
return pd.Series(
|
| 174 |
[
|
| 175 |
_lemmatize(doc, character_threshold)
|
| 176 |
for doc in tqdm(
|
| 177 |
nlp.pipe(text_data, batch_size=batch_size, n_process=n_jobs, disable=["parser", "ner", "tok2vec"]),
|
| 178 |
total=len(text_data),
|
| 179 |
+
desc="Lemmatization",
|
| 180 |
unit="doc",
|
| 181 |
+
disable=not show_progress,
|
| 182 |
)
|
| 183 |
],
|
| 184 |
)
|
data/slang.json
ADDED
|
Binary file (6.24 kB). View file
|
|
|