Update app.py
Browse files
app.py
CHANGED
|
@@ -4,21 +4,31 @@ import numpy as np
|
|
| 4 |
import joblib
|
| 5 |
import pickle
|
| 6 |
|
| 7 |
-
|
| 8 |
-
model = joblib.load('xgboost_valorant_model.pkl')
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# Daftar Map & Agent (Sesuaikan dengan data Anda)
|
| 17 |
MAP_LIST = ['Ascent', 'Bind', 'Breeze', 'Fracture', 'Haven', 'Icebox', 'Lotus', 'Pearl', 'Split', 'Sunset', 'Abyss', 'Corrode']
|
| 18 |
-
AGENT_LIST = [
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
| 22 |
|
| 23 |
# --- 2. FUNGSI PREDIKSI ---
|
| 24 |
def predict_match(map_name, t1_side,
|
|
@@ -33,26 +43,26 @@ def predict_match(map_name, t1_side,
|
|
| 33 |
|
| 34 |
# B. Helper: Ambil Stats dari Knowledge Base
|
| 35 |
def get_stats(player, agent):
|
| 36 |
-
#
|
| 37 |
-
|
| 38 |
-
key = (
|
|
|
|
|
|
|
| 39 |
stats = knowledge_base.get(key, {'Agent_WR': 0.5, 'General_WR': 0.5, 'Exp': 0})
|
| 40 |
return stats
|
| 41 |
|
| 42 |
# C. Isi Fitur Winrate (Skenario 4 Logic)
|
| 43 |
-
# Team 1
|
| 44 |
t1_inputs = [
|
| 45 |
(t1_p1_name, t1_p1_agent), (t1_p2_name, t1_p2_agent), (t1_p3_name, t1_p3_agent),
|
| 46 |
(t1_p4_name, t1_p4_agent), (t1_p5_name, t1_p5_agent)
|
| 47 |
]
|
| 48 |
-
|
| 49 |
t1_general_wrs = []
|
| 50 |
|
| 51 |
for i, (p_name, p_agent) in enumerate(t1_inputs):
|
| 52 |
stats = get_stats(p_name, p_agent)
|
| 53 |
idx = i + 1
|
| 54 |
|
| 55 |
-
# Isi ke DataFrame (Cek apakah kolom ada di training_columns agar tidak error)
|
| 56 |
if f'T1_P{idx}_Agent_WR' in training_columns:
|
| 57 |
input_data.at[0, f'T1_P{idx}_Agent_WR'] = stats['Agent_WR']
|
| 58 |
if f'T1_P{idx}_General_WR' in training_columns:
|
|
@@ -62,7 +72,7 @@ def predict_match(map_name, t1_side,
|
|
| 62 |
|
| 63 |
t1_general_wrs.append(stats['General_WR'])
|
| 64 |
|
| 65 |
-
# Team 2
|
| 66 |
t2_inputs = [
|
| 67 |
(t2_p1_name, t2_p1_agent), (t2_p2_name, t2_p2_agent), (t2_p3_name, t2_p3_agent),
|
| 68 |
(t2_p4_name, t2_p4_agent), (t2_p5_name, t2_p5_agent)
|
|
@@ -72,12 +82,14 @@ def predict_match(map_name, t1_side,
|
|
| 72 |
for i, (p_name, p_agent) in enumerate(t2_inputs):
|
| 73 |
stats = get_stats(p_name, p_agent)
|
| 74 |
idx = i + 1
|
|
|
|
| 75 |
if f'T2_P{idx}_Agent_WR' in training_columns:
|
| 76 |
input_data.at[0, f'T2_P{idx}_Agent_WR'] = stats['Agent_WR']
|
| 77 |
if f'T2_P{idx}_General_WR' in training_columns:
|
| 78 |
input_data.at[0, f'T2_P{idx}_General_WR'] = stats['General_WR']
|
| 79 |
if f'T2_P{idx}_Agent_Exp' in training_columns:
|
| 80 |
input_data.at[0, f'T2_P{idx}_Agent_Exp'] = stats['Exp']
|
|
|
|
| 81 |
t2_general_wrs.append(stats['General_WR'])
|
| 82 |
|
| 83 |
# D. Hitung WR Diff
|
|
@@ -86,46 +98,98 @@ def predict_match(map_name, t1_side,
|
|
| 86 |
t2_avg = np.mean(t2_general_wrs)
|
| 87 |
input_data.at[0, 'WR_Diff'] = t1_avg - t2_avg
|
| 88 |
|
| 89 |
-
# E. One-Hot Encoding Manual
|
| 90 |
# Map
|
| 91 |
map_col = f'MAP_{map_name}'
|
| 92 |
if map_col in training_columns:
|
| 93 |
input_data.at[0, map_col] = 1
|
| 94 |
|
| 95 |
-
# Start Side
|
| 96 |
if 'T1_StartSide_Defense' in training_columns:
|
| 97 |
input_data.at[0, 'T1_StartSide_Defense'] = 1 if t1_side == 'Defense' else 0
|
| 98 |
-
if 'T2_StartSide_Defense' in training_columns:
|
| 99 |
input_data.at[0, 'T2_StartSide_Defense'] = 1 if t1_side == 'Attack' else 0
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
# Karena OHE manual agak ribet mencocokkan nama kolom tepatnya,
|
| 104 |
-
# kita gunakan cara pintar: Loop semua input agent, cari kolom yang sesuai di training_columns
|
| 105 |
-
|
| 106 |
-
# Set T1 Agents
|
| 107 |
for i, (_, agent) in enumerate(t1_inputs):
|
| 108 |
col_name = f'T1_P{i+1}_Agent_{agent}'
|
| 109 |
if col_name in training_columns:
|
| 110 |
input_data.at[0, col_name] = 1
|
| 111 |
|
| 112 |
-
#
|
| 113 |
for i, (_, agent) in enumerate(t2_inputs):
|
| 114 |
col_name = f'T2_P{i+1}_Agent_{agent}'
|
| 115 |
if col_name in training_columns:
|
| 116 |
input_data.at[0, col_name] = 1
|
| 117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
# --- 3. PREDIKSI ---
|
| 119 |
-
# Convert ke float agar aman
|
| 120 |
input_data = input_data.astype(float)
|
| 121 |
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
# --- 3. UI GRADIO ---
|
| 131 |
with gr.Blocks(title="Valorant Match Predictor") as demo:
|
|
@@ -141,36 +205,28 @@ with gr.Blocks(title="Valorant Match Predictor") as demo:
|
|
| 141 |
# Team 1 Inputs
|
| 142 |
with gr.Column():
|
| 143 |
gr.Markdown("### π΅ Team 1 Roster")
|
| 144 |
-
t1_p1_n = gr.Textbox(label="P1 Name")
|
| 145 |
t1_p1_a = gr.Dropdown(AGENT_LIST, label="P1 Agent")
|
| 146 |
-
|
| 147 |
-
t1_p2_n = gr.Textbox(label="P2 Name")
|
| 148 |
t1_p2_a = gr.Dropdown(AGENT_LIST, label="P2 Agent")
|
| 149 |
-
|
| 150 |
t1_p3_n = gr.Textbox(label="P3 Name")
|
| 151 |
t1_p3_a = gr.Dropdown(AGENT_LIST, label="P3 Agent")
|
| 152 |
-
|
| 153 |
t1_p4_n = gr.Textbox(label="P4 Name")
|
| 154 |
t1_p4_a = gr.Dropdown(AGENT_LIST, label="P4 Agent")
|
| 155 |
-
|
| 156 |
t1_p5_n = gr.Textbox(label="P5 Name")
|
| 157 |
t1_p5_a = gr.Dropdown(AGENT_LIST, label="P5 Agent")
|
| 158 |
|
| 159 |
# Team 2 Inputs
|
| 160 |
with gr.Column():
|
| 161 |
gr.Markdown("### π΄ Team 2 Roster")
|
| 162 |
-
t2_p1_n = gr.Textbox(label="P1 Name")
|
| 163 |
t2_p1_a = gr.Dropdown(AGENT_LIST, label="P1 Agent")
|
| 164 |
-
|
| 165 |
-
t2_p2_n = gr.Textbox(label="P2 Name")
|
| 166 |
t2_p2_a = gr.Dropdown(AGENT_LIST, label="P2 Agent")
|
| 167 |
-
|
| 168 |
t2_p3_n = gr.Textbox(label="P3 Name")
|
| 169 |
t2_p3_a = gr.Dropdown(AGENT_LIST, label="P3 Agent")
|
| 170 |
-
|
| 171 |
t2_p4_n = gr.Textbox(label="P4 Name")
|
| 172 |
t2_p4_a = gr.Dropdown(AGENT_LIST, label="P4 Agent")
|
| 173 |
-
|
| 174 |
t2_p5_n = gr.Textbox(label="P5 Name")
|
| 175 |
t2_p5_a = gr.Dropdown(AGENT_LIST, label="P5 Agent")
|
| 176 |
|
|
|
|
| 4 |
import joblib
|
| 5 |
import pickle
|
| 6 |
|
| 7 |
+
try:
|
| 8 |
+
model = joblib.load('xgboost_valorant_model.pkl')
|
| 9 |
+
|
| 10 |
+
# Sesuaikan nama file dengan output training
|
| 11 |
+
with open('player_stats.pkl', 'rb') as f:
|
| 12 |
+
knowledge_base = pickle.load(f)
|
| 13 |
+
|
| 14 |
+
with open('model_columns.pkl', 'rb') as f:
|
| 15 |
+
training_columns = pickle.load(f)
|
| 16 |
+
|
| 17 |
+
print("β
Model dan Data berhasil dimuat.")
|
| 18 |
+
except Exception as e:
|
| 19 |
+
print(f"β Error loading files: {e}")
|
| 20 |
+
# Dummy data untuk mencegah crash saat development lokal tanpa file
|
| 21 |
+
knowledge_base = {}
|
| 22 |
+
training_columns = []
|
| 23 |
|
| 24 |
# Daftar Map & Agent (Sesuaikan dengan data Anda)
|
| 25 |
MAP_LIST = ['Ascent', 'Bind', 'Breeze', 'Fracture', 'Haven', 'Icebox', 'Lotus', 'Pearl', 'Split', 'Sunset', 'Abyss', 'Corrode']
|
| 26 |
+
AGENT_LIST = [
|
| 27 |
+
'Jett', 'Raze', 'Reyna', 'Phoenix', 'Yoru', 'Neon', 'Iso', 'Waylay', # Duelist
|
| 28 |
+
'Sova', 'Fade', 'Breach', 'Skye', 'Kayo', 'Gekko', 'Tejo', # Initiator
|
| 29 |
+
'Omen', 'Brimstone', 'Viper', 'Astra', 'Harbor', 'Clove', # Controller
|
| 30 |
+
'Sage', 'Cypher', 'Killjoy', 'Chamber', 'Deadlock', 'Vyse', 'Veto' # Sentinel
|
| 31 |
+
]
|
| 32 |
|
| 33 |
# --- 2. FUNGSI PREDIKSI ---
|
| 34 |
def predict_match(map_name, t1_side,
|
|
|
|
| 43 |
|
| 44 |
# B. Helper: Ambil Stats dari Knowledge Base
|
| 45 |
def get_stats(player, agent):
|
| 46 |
+
# Normalisasi input nama player (strip whitespace)
|
| 47 |
+
player_clean = player.strip() if player else ""
|
| 48 |
+
key = (player_clean, agent)
|
| 49 |
+
|
| 50 |
+
# Ambil stats, default 0.5 jika tidak ada
|
| 51 |
stats = knowledge_base.get(key, {'Agent_WR': 0.5, 'General_WR': 0.5, 'Exp': 0})
|
| 52 |
return stats
|
| 53 |
|
| 54 |
# C. Isi Fitur Winrate (Skenario 4 Logic)
|
| 55 |
+
# Team 1 Inputs
|
| 56 |
t1_inputs = [
|
| 57 |
(t1_p1_name, t1_p1_agent), (t1_p2_name, t1_p2_agent), (t1_p3_name, t1_p3_agent),
|
| 58 |
(t1_p4_name, t1_p4_agent), (t1_p5_name, t1_p5_agent)
|
| 59 |
]
|
|
|
|
| 60 |
t1_general_wrs = []
|
| 61 |
|
| 62 |
for i, (p_name, p_agent) in enumerate(t1_inputs):
|
| 63 |
stats = get_stats(p_name, p_agent)
|
| 64 |
idx = i + 1
|
| 65 |
|
|
|
|
| 66 |
if f'T1_P{idx}_Agent_WR' in training_columns:
|
| 67 |
input_data.at[0, f'T1_P{idx}_Agent_WR'] = stats['Agent_WR']
|
| 68 |
if f'T1_P{idx}_General_WR' in training_columns:
|
|
|
|
| 72 |
|
| 73 |
t1_general_wrs.append(stats['General_WR'])
|
| 74 |
|
| 75 |
+
# Team 2 Inputs
|
| 76 |
t2_inputs = [
|
| 77 |
(t2_p1_name, t2_p1_agent), (t2_p2_name, t2_p2_agent), (t2_p3_name, t2_p3_agent),
|
| 78 |
(t2_p4_name, t2_p4_agent), (t2_p5_name, t2_p5_agent)
|
|
|
|
| 82 |
for i, (p_name, p_agent) in enumerate(t2_inputs):
|
| 83 |
stats = get_stats(p_name, p_agent)
|
| 84 |
idx = i + 1
|
| 85 |
+
|
| 86 |
if f'T2_P{idx}_Agent_WR' in training_columns:
|
| 87 |
input_data.at[0, f'T2_P{idx}_Agent_WR'] = stats['Agent_WR']
|
| 88 |
if f'T2_P{idx}_General_WR' in training_columns:
|
| 89 |
input_data.at[0, f'T2_P{idx}_General_WR'] = stats['General_WR']
|
| 90 |
if f'T2_P{idx}_Agent_Exp' in training_columns:
|
| 91 |
input_data.at[0, f'T2_P{idx}_Agent_Exp'] = stats['Exp']
|
| 92 |
+
|
| 93 |
t2_general_wrs.append(stats['General_WR'])
|
| 94 |
|
| 95 |
# D. Hitung WR Diff
|
|
|
|
| 98 |
t2_avg = np.mean(t2_general_wrs)
|
| 99 |
input_data.at[0, 'WR_Diff'] = t1_avg - t2_avg
|
| 100 |
|
| 101 |
+
# E. One-Hot Encoding Manual
|
| 102 |
# Map
|
| 103 |
map_col = f'MAP_{map_name}'
|
| 104 |
if map_col in training_columns:
|
| 105 |
input_data.at[0, map_col] = 1
|
| 106 |
|
| 107 |
+
# Start Side
|
| 108 |
if 'T1_StartSide_Defense' in training_columns:
|
| 109 |
input_data.at[0, 'T1_StartSide_Defense'] = 1 if t1_side == 'Defense' else 0
|
| 110 |
+
if 'T2_StartSide_Defense' in training_columns:
|
| 111 |
input_data.at[0, 'T2_StartSide_Defense'] = 1 if t1_side == 'Attack' else 0
|
| 112 |
|
| 113 |
+
# Agent OHE (Slot Based)
|
| 114 |
+
# T1 Agents
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
for i, (_, agent) in enumerate(t1_inputs):
|
| 116 |
col_name = f'T1_P{i+1}_Agent_{agent}'
|
| 117 |
if col_name in training_columns:
|
| 118 |
input_data.at[0, col_name] = 1
|
| 119 |
|
| 120 |
+
# T2 Agents
|
| 121 |
for i, (_, agent) in enumerate(t2_inputs):
|
| 122 |
col_name = f'T2_P{i+1}_Agent_{agent}'
|
| 123 |
if col_name in training_columns:
|
| 124 |
input_data.at[0, col_name] = 1
|
| 125 |
|
| 126 |
+
# ==============================================================================
|
| 127 |
+
# --- BAGIAN DEBUGGING YANG DITAMBAHKAN ---
|
| 128 |
+
# Log ini akan muncul di Terminal / Logs Hugging Face, bukan di UI
|
| 129 |
+
print("\n" + "="*40)
|
| 130 |
+
print(f"π DEBUGGING PREDICTION INPUT")
|
| 131 |
+
print(f"Map: {map_name} | T1 Side: {t1_side}")
|
| 132 |
+
print("-" * 40)
|
| 133 |
+
|
| 134 |
+
print("π΅ TIM 1 STATS:")
|
| 135 |
+
for i, (p, a) in enumerate(t1_inputs):
|
| 136 |
+
# Ambil nilai yang sudah masuk ke input_data
|
| 137 |
+
wr = input_data.at[0, f'T1_P{i+1}_Agent_WR']
|
| 138 |
+
gen_wr = input_data.at[0, f'T1_P{i+1}_General_WR']
|
| 139 |
+
exp = input_data.at[0, f'T1_P{i+1}_Agent_Exp']
|
| 140 |
+
|
| 141 |
+
status = "β
FOUND" if wr != 0.5 or gen_wr != 0.5 else "β NOT FOUND (Using Default)"
|
| 142 |
+
print(f" P{i+1}: {p:<15} ({a:<8}) | WR: {wr:.2f} | GenWR: {gen_wr:.2f} | Exp: {exp:<3} -> {status}")
|
| 143 |
+
|
| 144 |
+
print("-" * 40)
|
| 145 |
+
print("π΄ TIM 2 STATS:")
|
| 146 |
+
for i, (p, a) in enumerate(t2_inputs):
|
| 147 |
+
wr = input_data.at[0, f'T2_P{i+1}_Agent_WR']
|
| 148 |
+
gen_wr = input_data.at[0, f'T2_P{i+1}_General_WR']
|
| 149 |
+
exp = input_data.at[0, f'T2_P{i+1}_Agent_Exp']
|
| 150 |
+
|
| 151 |
+
status = "β
FOUND" if wr != 0.5 or gen_wr != 0.5 else "β NOT FOUND (Using Default)"
|
| 152 |
+
print(f" P{i+1}: {p:<15} ({a:<8}) | WR: {wr:.2f} | GenWR: {gen_wr:.2f} | Exp: {exp:<3} -> {status}")
|
| 153 |
+
|
| 154 |
+
if 'WR_Diff' in training_columns:
|
| 155 |
+
print("-" * 40)
|
| 156 |
+
print(f"π Final WR_Diff (T1 - T2): {input_data.at[0, 'WR_Diff']:.4f}")
|
| 157 |
+
if input_data.at[0, 'WR_Diff'] > 0:
|
| 158 |
+
print(" -> Tim 1 Secara Statistik Lebih Unggul.")
|
| 159 |
+
elif input_data.at[0, 'WR_Diff'] < 0:
|
| 160 |
+
print(" -> Tim 2 Secara Statistik Lebih Unggul.")
|
| 161 |
+
else:
|
| 162 |
+
print(" -> Kekuatan Statistik Seimbang (Netral).")
|
| 163 |
+
|
| 164 |
+
print("="*40 + "\n")
|
| 165 |
+
# ==============================================================================
|
| 166 |
+
|
| 167 |
# --- 3. PREDIKSI ---
|
|
|
|
| 168 |
input_data = input_data.astype(float)
|
| 169 |
|
| 170 |
+
try:
|
| 171 |
+
prob = model.predict_proba(input_data)[0]
|
| 172 |
+
win_prob_t1 = prob[1]
|
| 173 |
+
|
| 174 |
+
if win_prob_t1 > 0.5:
|
| 175 |
+
winner = "π΅ TEAM 1 WINS"
|
| 176 |
+
confidence = win_prob_t1
|
| 177 |
+
color = "blue"
|
| 178 |
+
else:
|
| 179 |
+
winner = "π΄ TEAM 2 WINS"
|
| 180 |
+
confidence = 1 - win_prob_t1
|
| 181 |
+
color = "red"
|
| 182 |
+
|
| 183 |
+
# Format Output Debugging ke UI juga (Optional)
|
| 184 |
+
debug_msg = "β
Data found for players."
|
| 185 |
+
# Cek jika banyak player not found (WR_Diff 0)
|
| 186 |
+
if 'WR_Diff' in input_data and input_data.at[0, 'WR_Diff'] == 0:
|
| 187 |
+
debug_msg = "β οΈ WARNING: Player stats not found (WR_Diff = 0). Check spelling!"
|
| 188 |
+
|
| 189 |
+
return f"{winner}\nConfidence: {confidence:.1%}\n({debug_msg})"
|
| 190 |
+
|
| 191 |
+
except Exception as e:
|
| 192 |
+
return f"Error during prediction: {str(e)}"
|
| 193 |
|
| 194 |
# --- 3. UI GRADIO ---
|
| 195 |
with gr.Blocks(title="Valorant Match Predictor") as demo:
|
|
|
|
| 205 |
# Team 1 Inputs
|
| 206 |
with gr.Column():
|
| 207 |
gr.Markdown("### π΅ Team 1 Roster")
|
| 208 |
+
t1_p1_n = gr.Textbox(label="P1 Name", placeholder="e.g. f0rsakeN")
|
| 209 |
t1_p1_a = gr.Dropdown(AGENT_LIST, label="P1 Agent")
|
| 210 |
+
t1_p2_n = gr.Textbox(label="P2 Name", placeholder="e.g. mindfreak")
|
|
|
|
| 211 |
t1_p2_a = gr.Dropdown(AGENT_LIST, label="P2 Agent")
|
|
|
|
| 212 |
t1_p3_n = gr.Textbox(label="P3 Name")
|
| 213 |
t1_p3_a = gr.Dropdown(AGENT_LIST, label="P3 Agent")
|
|
|
|
| 214 |
t1_p4_n = gr.Textbox(label="P4 Name")
|
| 215 |
t1_p4_a = gr.Dropdown(AGENT_LIST, label="P4 Agent")
|
|
|
|
| 216 |
t1_p5_n = gr.Textbox(label="P5 Name")
|
| 217 |
t1_p5_a = gr.Dropdown(AGENT_LIST, label="P5 Agent")
|
| 218 |
|
| 219 |
# Team 2 Inputs
|
| 220 |
with gr.Column():
|
| 221 |
gr.Markdown("### π΄ Team 2 Roster")
|
| 222 |
+
t2_p1_n = gr.Textbox(label="P1 Name", placeholder="e.g. Tenz")
|
| 223 |
t2_p1_a = gr.Dropdown(AGENT_LIST, label="P1 Agent")
|
| 224 |
+
t2_p2_n = gr.Textbox(label="P2 Name", placeholder="e.g. Zekken")
|
|
|
|
| 225 |
t2_p2_a = gr.Dropdown(AGENT_LIST, label="P2 Agent")
|
|
|
|
| 226 |
t2_p3_n = gr.Textbox(label="P3 Name")
|
| 227 |
t2_p3_a = gr.Dropdown(AGENT_LIST, label="P3 Agent")
|
|
|
|
| 228 |
t2_p4_n = gr.Textbox(label="P4 Name")
|
| 229 |
t2_p4_a = gr.Dropdown(AGENT_LIST, label="P4 Agent")
|
|
|
|
| 230 |
t2_p5_n = gr.Textbox(label="P5 Name")
|
| 231 |
t2_p5_a = gr.Dropdown(AGENT_LIST, label="P5 Agent")
|
| 232 |
|