Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from transformers import AutoConfig, AutoModelForCausalLM | |
| from janus.models import MultiModalityCausalLM, VLChatProcessor | |
| from janus.utils.io import load_pil_images | |
| from PIL import Image | |
| import numpy as np | |
| import os | |
| import time | |
| import spaces | |
| # Load model and processor | |
| model_path = "deepseek-ai/Janus-Pro-7B" | |
| config = AutoConfig.from_pretrained(model_path) | |
| language_config = config.language_config | |
| language_config._attn_implementation = 'eager' | |
| vl_gpt = AutoModelForCausalLM.from_pretrained(model_path, | |
| language_config=language_config, | |
| trust_remote_code=True) | |
| if torch.cuda.is_available(): | |
| vl_gpt = vl_gpt.to(torch.bfloat16).cuda() | |
| else: | |
| vl_gpt = vl_gpt.to(torch.float16) | |
| vl_chat_processor = VLChatProcessor.from_pretrained(model_path) | |
| tokenizer = vl_chat_processor.tokenizer | |
| cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| def multimodal_understanding(image, question, seed, top_p, temperature): | |
| # Clear CUDA cache before generating | |
| torch.cuda.empty_cache() | |
| # set seed | |
| torch.manual_seed(seed) | |
| np.random.seed(seed) | |
| torch.cuda.manual_seed(seed) | |
| conversation = [ | |
| { | |
| "role": "<|User|>", | |
| "content": f"<image_placeholder>\n{question}", | |
| "images": [image], | |
| }, | |
| {"role": "<|Assistant|>", "content": ""}, | |
| ] | |
| pil_images = [Image.fromarray(image)] | |
| prepare_inputs = vl_chat_processor( | |
| conversations=conversation, images=pil_images, force_batchify=True | |
| ).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16) | |
| inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs) | |
| outputs = vl_gpt.language_model.generate( | |
| inputs_embeds=inputs_embeds, | |
| attention_mask=prepare_inputs.attention_mask, | |
| pad_token_id=tokenizer.eos_token_id, | |
| bos_token_id=tokenizer.bos_token_id, | |
| eos_token_id=tokenizer.eos_token_id, | |
| max_new_tokens=4000, | |
| do_sample=False if temperature == 0 else True, | |
| use_cache=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ) | |
| answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True) | |
| return answer | |
| def generate(input_ids, | |
| width, | |
| height, | |
| temperature: float = 1, | |
| parallel_size: int = 5, | |
| cfg_weight: float = 5, | |
| image_token_num_per_image: int = 576, | |
| patch_size: int = 16): | |
| # Clear CUDA cache before generating | |
| torch.cuda.empty_cache() | |
| tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device) | |
| for i in range(parallel_size * 2): | |
| tokens[i, :] = input_ids | |
| if i % 2 != 0: | |
| tokens[i, 1:-1] = vl_chat_processor.pad_id | |
| inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens) | |
| generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(cuda_device) | |
| pkv = None | |
| for i in range(image_token_num_per_image): | |
| with torch.no_grad(): | |
| outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds, | |
| use_cache=True, | |
| past_key_values=pkv) | |
| pkv = outputs.past_key_values | |
| hidden_states = outputs.last_hidden_state | |
| logits = vl_gpt.gen_head(hidden_states[:, -1, :]) | |
| logit_cond = logits[0::2, :] | |
| logit_uncond = logits[1::2, :] | |
| logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond) | |
| probs = torch.softmax(logits / temperature, dim=-1) | |
| next_token = torch.multinomial(probs, num_samples=1) | |
| generated_tokens[:, i] = next_token.squeeze(dim=-1) | |
| next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1) | |
| img_embeds = vl_gpt.prepare_gen_img_embeds(next_token) | |
| inputs_embeds = img_embeds.unsqueeze(dim=1) | |
| patches = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int), | |
| shape=[parallel_size, 8, width // patch_size, height // patch_size]) | |
| return generated_tokens.to(dtype=torch.int), patches | |
| def unpack(dec, width, height, parallel_size=5): | |
| dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1) | |
| dec = np.clip((dec + 1) / 2 * 255, 0, 255) | |
| visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8) | |
| visual_img[:, :, :] = dec | |
| return visual_img | |
| # Specify a duration to avoid timeout | |
| def generate_image(prompt, | |
| seed=None, | |
| guidance=5, | |
| t2i_temperature=1.0): | |
| # Clear CUDA cache and avoid tracking gradients | |
| torch.cuda.empty_cache() | |
| # Set the seed for reproducible results | |
| if seed is not None: | |
| torch.manual_seed(seed) | |
| torch.cuda.manual_seed(seed) | |
| np.random.seed(seed) | |
| width = 384 | |
| height = 384 | |
| parallel_size = 5 | |
| with torch.no_grad(): | |
| messages = [{'role': '<|User|>', 'content': prompt}, | |
| {'role': '<|Assistant|>', 'content': ''}] | |
| text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(conversations=messages, | |
| sft_format=vl_chat_processor.sft_format, | |
| system_prompt='') | |
| text = text + vl_chat_processor.image_start_tag | |
| input_ids = torch.LongTensor(tokenizer.encode(text)) | |
| output, patches = generate(input_ids, | |
| width // 16 * 16, | |
| height // 16 * 16, | |
| cfg_weight=guidance, | |
| parallel_size=parallel_size, | |
| temperature=t2i_temperature) | |
| images = unpack(patches, | |
| width // 16 * 16, | |
| height // 16 * 16, | |
| parallel_size=parallel_size) | |
| return [Image.fromarray(images[i]).resize((768, 768), Image.LANCZOS) for i in range(parallel_size)] | |
| # Custom CSS as a string | |
| custom_css = """ | |
| .gradio-container { | |
| font-family: 'Inter', -apple-system, sans-serif; | |
| } | |
| .image-preview { | |
| min-height: 300px; | |
| max-height: 500px; | |
| width: 100%; | |
| object-fit: contain; | |
| border-radius: 8px; | |
| border: 2px solid #eee; | |
| } | |
| .tab-nav { | |
| background: white; | |
| padding: 1rem; | |
| border-radius: 8px; | |
| box-shadow: 0 2px 4px rgba(0,0,0,0.05); | |
| } | |
| .examples-table { | |
| font-size: 0.9rem; | |
| } | |
| .gr-button.gr-button-lg { | |
| padding: 12px 24px; | |
| font-size: 1.1rem; | |
| } | |
| .gr-input, .gr-select { | |
| border-radius: 6px; | |
| } | |
| .gr-form { | |
| background: white; | |
| padding: 20px; | |
| border-radius: 12px; | |
| box-shadow: 0 4px 6px rgba(0,0,0,0.05); | |
| } | |
| .gr-panel { | |
| border: none; | |
| background: transparent; | |
| } | |
| .footer { | |
| text-align: center; | |
| margin-top: 2rem; | |
| padding: 1rem; | |
| color: #666; | |
| } | |
| """ | |
| # Gradio interface with improved UI | |
| with gr.Blocks( | |
| theme=gr.themes.Soft(primary_hue="blue", secondary_hue="indigo"), | |
| css=custom_css | |
| ) as demo: | |
| gr.Markdown( | |
| """ | |
| # Deepseek Multimodal | |
| ### Advanced AI for Visual Understanding and Generation | |
| This powerful multimodal AI system combines: | |
| * **Visual Analysis**: Advanced image understanding and medical image interpretation | |
| * **Creative Generation**: High-quality image generation from text descriptions | |
| * **Interactive Chat**: Natural conversation about visual content | |
| """ | |
| ) | |
| with gr.Tabs(): | |
| # Visual Chat Tab | |
| with gr.Tab("Visual Understanding"): | |
| with gr.Row(equal_height=True): | |
| with gr.Column(scale=1): | |
| image_input = gr.Image( | |
| label="Upload Image", | |
| type="numpy", | |
| elem_classes="image-preview" | |
| ) | |
| with gr.Column(scale=1): | |
| question_input = gr.Textbox( | |
| label="Question or Analysis Request", | |
| placeholder="Ask a question about the image or request detailed analysis...", | |
| lines=3 | |
| ) | |
| with gr.Row(): | |
| und_seed_input = gr.Number( | |
| label="Seed", | |
| precision=0, | |
| value=42, | |
| container=False | |
| ) | |
| top_p = gr.Slider( | |
| minimum=0, | |
| maximum=1, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p", | |
| container=False | |
| ) | |
| temperature = gr.Slider( | |
| minimum=0, | |
| maximum=1, | |
| value=0.1, | |
| step=0.05, | |
| label="Temperature", | |
| container=False | |
| ) | |
| understanding_button = gr.Button( | |
| "Analyze Image", | |
| variant="primary" | |
| ) | |
| understanding_output = gr.Textbox( | |
| label="Analysis Results", | |
| lines=10, | |
| show_copy_button=True | |
| ) | |
| with gr.Accordion("Medical Analysis Examples", open=False): | |
| gr.Examples( | |
| examples=[ | |
| [ | |
| """You are an AI assistant trained to analyze medical images...""", | |
| "fundus.webp", | |
| ], | |
| ], | |
| inputs=[question_input, image_input], | |
| ) | |
| # Image Generation Tab | |
| with gr.Tab("Image Generation"): | |
| with gr.Column(): | |
| prompt_input = gr.Textbox( | |
| label="Image Description", | |
| placeholder="Describe the image you want to create in detail...", | |
| lines=3 | |
| ) | |
| with gr.Row(): | |
| cfg_weight_input = gr.Slider( | |
| minimum=1, | |
| maximum=10, | |
| value=5, | |
| step=0.5, | |
| label="Guidance Scale", | |
| info="Higher values create images that more closely match your prompt" | |
| ) | |
| t2i_temperature = gr.Slider( | |
| minimum=0, | |
| maximum=1, | |
| value=1.0, | |
| step=0.05, | |
| label="Temperature", | |
| info="Controls randomness in generation" | |
| ) | |
| seed_input = gr.Number( | |
| label="Seed (Optional)", | |
| precision=0, | |
| value=12345, | |
| info="Set for reproducible results" | |
| ) | |
| generation_button = gr.Button( | |
| "Generate Images", | |
| variant="primary" | |
| ) | |
| image_output = gr.Gallery( | |
| label="Generated Images", | |
| columns=3, | |
| rows=2, | |
| height=500, | |
| object_fit="contain" | |
| ) | |
| with gr.Accordion("Generation Examples", open=False): | |
| gr.Examples( | |
| examples=[ | |
| "Master shifu racoon wearing drip attire as a street gangster.", | |
| "The face of a beautiful girl", | |
| "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
| "A glass of red wine on a reflective surface.", | |
| "A cute and adorable baby fox with big brown eyes...", | |
| ], | |
| inputs=prompt_input, | |
| ) | |
| # Connect components | |
| understanding_button.click( | |
| multimodal_understanding, | |
| inputs=[image_input, question_input, und_seed_input, top_p, temperature], | |
| outputs=understanding_output | |
| ) | |
| generation_button.click( | |
| fn=generate_image, | |
| inputs=[prompt_input, seed_input, cfg_weight_input, t2i_temperature], | |
| outputs=image_output | |
| ) | |
| # Launch the demo | |
| if __name__ == "__main__": | |
| demo.launch(share=True) | |