Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,13 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
|
|
|
|
|
|
| 3 |
import concurrent.futures
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
# Available LLM models
|
| 6 |
LLM_MODELS = {
|
| 7 |
"Llama-3.3": "meta-llama/Llama-3.3-70B-Instruct",
|
|
@@ -20,24 +26,27 @@ DEFAULT_MODELS = [
|
|
| 20 |
"mistralai/Mistral-Nemo-Instruct-2407"
|
| 21 |
]
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
def process_file(file):
|
| 26 |
if file is None:
|
| 27 |
return ""
|
| 28 |
if file.name.endswith(('.txt', '.md')):
|
| 29 |
return file.read().decode('utf-8')
|
| 30 |
return f"Uploaded file: {file.name}"
|
| 31 |
|
| 32 |
-
def
|
| 33 |
-
client,
|
| 34 |
-
message,
|
| 35 |
-
history,
|
| 36 |
-
system_message,
|
| 37 |
-
max_tokens,
|
| 38 |
-
temperature,
|
| 39 |
-
top_p,
|
| 40 |
-
):
|
| 41 |
messages = [{"role": "system", "content": system_message}]
|
| 42 |
|
| 43 |
for user, assistant in history:
|
|
@@ -47,34 +56,50 @@ def respond_single(
|
|
| 47 |
messages.append({"role": "assistant", "content": assistant})
|
| 48 |
|
| 49 |
messages.append({"role": "user", "content": message})
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
try:
|
| 53 |
-
for msg in
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
|
|
|
| 57 |
temperature=temperature,
|
| 58 |
top_p=top_p,
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
except Exception as e:
|
| 64 |
yield f"Error: {str(e)}"
|
| 65 |
|
| 66 |
def respond_all(
|
| 67 |
-
message,
|
| 68 |
file,
|
| 69 |
-
history1,
|
| 70 |
-
history2,
|
| 71 |
-
history3,
|
| 72 |
-
selected_models,
|
| 73 |
-
system_message,
|
| 74 |
-
max_tokens,
|
| 75 |
-
temperature,
|
| 76 |
-
top_p,
|
| 77 |
-
):
|
| 78 |
if file:
|
| 79 |
file_content = process_file(file)
|
| 80 |
message = f"{message}\n\nFile content:\n{file_content}"
|
|
@@ -82,21 +107,14 @@ def respond_all(
|
|
| 82 |
while len(selected_models) < 3:
|
| 83 |
selected_models.append(selected_models[-1])
|
| 84 |
|
| 85 |
-
def generate(
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
message,
|
| 89 |
-
history,
|
| 90 |
-
system_message,
|
| 91 |
-
max_tokens,
|
| 92 |
-
temperature,
|
| 93 |
-
top_p,
|
| 94 |
-
)
|
| 95 |
|
| 96 |
return (
|
| 97 |
-
generate(
|
| 98 |
-
generate(
|
| 99 |
-
generate(
|
| 100 |
)
|
| 101 |
|
| 102 |
with gr.Blocks() as demo:
|
|
@@ -186,4 +204,7 @@ with gr.Blocks() as demo:
|
|
| 186 |
)
|
| 187 |
|
| 188 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
| 189 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
import os
|
| 4 |
+
from typing import List, Tuple, Generator
|
| 5 |
import concurrent.futures
|
| 6 |
|
| 7 |
+
# Hugging Face 토큰 설정
|
| 8 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false" # 경고 메시지 방지
|
| 9 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 10 |
+
|
| 11 |
# Available LLM models
|
| 12 |
LLM_MODELS = {
|
| 13 |
"Llama-3.3": "meta-llama/Llama-3.3-70B-Instruct",
|
|
|
|
| 26 |
"mistralai/Mistral-Nemo-Instruct-2407"
|
| 27 |
]
|
| 28 |
|
| 29 |
+
# Pipeline 초기화
|
| 30 |
+
pipes = {}
|
| 31 |
+
for model_name in LLM_MODELS.values():
|
| 32 |
+
try:
|
| 33 |
+
pipes[model_name] = pipeline(
|
| 34 |
+
"text-generation",
|
| 35 |
+
model=model_name,
|
| 36 |
+
token=HF_TOKEN,
|
| 37 |
+
device_map="auto"
|
| 38 |
+
)
|
| 39 |
+
except Exception as e:
|
| 40 |
+
print(f"Failed to load model {model_name}: {str(e)}")
|
| 41 |
|
| 42 |
+
def process_file(file) -> str:
|
| 43 |
if file is None:
|
| 44 |
return ""
|
| 45 |
if file.name.endswith(('.txt', '.md')):
|
| 46 |
return file.read().decode('utf-8')
|
| 47 |
return f"Uploaded file: {file.name}"
|
| 48 |
|
| 49 |
+
def format_messages(message: str, history: List[Tuple[str, str]], system_message: str) -> List[dict]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
messages = [{"role": "system", "content": system_message}]
|
| 51 |
|
| 52 |
for user, assistant in history:
|
|
|
|
| 56 |
messages.append({"role": "assistant", "content": assistant})
|
| 57 |
|
| 58 |
messages.append({"role": "user", "content": message})
|
| 59 |
+
return messages
|
| 60 |
+
|
| 61 |
+
def generate_response(
|
| 62 |
+
pipe,
|
| 63 |
+
messages: List[dict],
|
| 64 |
+
max_tokens: int,
|
| 65 |
+
temperature: float,
|
| 66 |
+
top_p: float
|
| 67 |
+
) -> Generator[str, None, None]:
|
| 68 |
try:
|
| 69 |
+
formatted_prompt = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
|
| 70 |
+
|
| 71 |
+
response = pipe(
|
| 72 |
+
formatted_prompt,
|
| 73 |
+
max_new_tokens=max_tokens,
|
| 74 |
temperature=temperature,
|
| 75 |
top_p=top_p,
|
| 76 |
+
do_sample=True,
|
| 77 |
+
pad_token_id=50256,
|
| 78 |
+
num_return_sequences=1,
|
| 79 |
+
streaming=True
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
generated_text = ""
|
| 83 |
+
for output in response:
|
| 84 |
+
new_text = output[0]['generated_text'][len(formatted_prompt):].strip()
|
| 85 |
+
generated_text = new_text
|
| 86 |
+
yield generated_text
|
| 87 |
+
|
| 88 |
except Exception as e:
|
| 89 |
yield f"Error: {str(e)}"
|
| 90 |
|
| 91 |
def respond_all(
|
| 92 |
+
message: str,
|
| 93 |
file,
|
| 94 |
+
history1: List[Tuple[str, str]],
|
| 95 |
+
history2: List[Tuple[str, str]],
|
| 96 |
+
history3: List[Tuple[str, str]],
|
| 97 |
+
selected_models: List[str],
|
| 98 |
+
system_message: str,
|
| 99 |
+
max_tokens: int,
|
| 100 |
+
temperature: float,
|
| 101 |
+
top_p: float,
|
| 102 |
+
) -> Tuple[Generator[str, None, None], Generator[str, None, None], Generator[str, None, None]]:
|
| 103 |
if file:
|
| 104 |
file_content = process_file(file)
|
| 105 |
message = f"{message}\n\nFile content:\n{file_content}"
|
|
|
|
| 107 |
while len(selected_models) < 3:
|
| 108 |
selected_models.append(selected_models[-1])
|
| 109 |
|
| 110 |
+
def generate(pipe, history):
|
| 111 |
+
messages = format_messages(message, history, system_message)
|
| 112 |
+
return generate_response(pipe, messages, max_tokens, temperature, top_p)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
return (
|
| 115 |
+
generate(pipes[selected_models[0]], history1),
|
| 116 |
+
generate(pipes[selected_models[1]], history2),
|
| 117 |
+
generate(pipes[selected_models[2]], history3),
|
| 118 |
)
|
| 119 |
|
| 120 |
with gr.Blocks() as demo:
|
|
|
|
| 204 |
)
|
| 205 |
|
| 206 |
if __name__ == "__main__":
|
| 207 |
+
# Hugging Face 토큰이 설정되어 있는지 확인
|
| 208 |
+
if not HF_TOKEN:
|
| 209 |
+
print("Warning: HF_TOKEN environment variable is not set")
|
| 210 |
demo.launch()
|