Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,9 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
import os
|
| 4 |
-
from typing import List, Tuple
|
| 5 |
-
import concurrent.futures
|
| 6 |
|
| 7 |
# Hugging Face ํ ํฐ ์ค์
|
| 8 |
-
os.environ["TOKENIZERS_PARALLELISM"] = "false" # ๊ฒฝ๊ณ ๋ฉ์์ง ๋ฐฉ์ง
|
| 9 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 10 |
|
| 11 |
# Available LLM models
|
|
@@ -26,18 +24,11 @@ DEFAULT_MODELS = [
|
|
| 26 |
"mistralai/Mistral-Nemo-Instruct-2407"
|
| 27 |
]
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
"text-generation",
|
| 35 |
-
model=model_name,
|
| 36 |
-
token=HF_TOKEN,
|
| 37 |
-
device_map="auto"
|
| 38 |
-
)
|
| 39 |
-
except Exception as e:
|
| 40 |
-
print(f"Failed to load model {model_name}: {str(e)}")
|
| 41 |
|
| 42 |
def process_file(file) -> str:
|
| 43 |
if file is None:
|
|
@@ -46,7 +37,15 @@ def process_file(file) -> str:
|
|
| 46 |
return file.read().decode('utf-8')
|
| 47 |
return f"Uploaded file: {file.name}"
|
| 48 |
|
| 49 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
messages = [{"role": "system", "content": system_message}]
|
| 51 |
|
| 52 |
for user, assistant in history:
|
|
@@ -56,35 +55,18 @@ def format_messages(message: str, history: List[Tuple[str, str]], system_message
|
|
| 56 |
messages.append({"role": "assistant", "content": assistant})
|
| 57 |
|
| 58 |
messages.append({"role": "user", "content": message})
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
def generate_response(
|
| 62 |
-
pipe,
|
| 63 |
-
messages: List[dict],
|
| 64 |
-
max_tokens: int,
|
| 65 |
-
temperature: float,
|
| 66 |
-
top_p: float
|
| 67 |
-
) -> Generator[str, None, None]:
|
| 68 |
try:
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
response = pipe(
|
| 72 |
-
formatted_prompt,
|
| 73 |
max_new_tokens=max_tokens,
|
|
|
|
| 74 |
temperature=temperature,
|
| 75 |
top_p=top_p,
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
streaming=True
|
| 80 |
-
)
|
| 81 |
-
|
| 82 |
-
generated_text = ""
|
| 83 |
-
for output in response:
|
| 84 |
-
new_text = output[0]['generated_text'][len(formatted_prompt):].strip()
|
| 85 |
-
generated_text = new_text
|
| 86 |
-
yield generated_text
|
| 87 |
-
|
| 88 |
except Exception as e:
|
| 89 |
yield f"Error: {str(e)}"
|
| 90 |
|
|
@@ -99,7 +81,7 @@ def respond_all(
|
|
| 99 |
max_tokens: int,
|
| 100 |
temperature: float,
|
| 101 |
top_p: float,
|
| 102 |
-
)
|
| 103 |
if file:
|
| 104 |
file_content = process_file(file)
|
| 105 |
message = f"{message}\n\nFile content:\n{file_content}"
|
|
@@ -107,16 +89,25 @@ def respond_all(
|
|
| 107 |
while len(selected_models) < 3:
|
| 108 |
selected_models.append(selected_models[-1])
|
| 109 |
|
| 110 |
-
def generate(
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
return (
|
| 115 |
-
generate(
|
| 116 |
-
generate(
|
| 117 |
-
generate(
|
| 118 |
)
|
| 119 |
|
|
|
|
|
|
|
| 120 |
css = """
|
| 121 |
footer {
|
| 122 |
visibility: hidden;
|
|
@@ -126,6 +117,7 @@ footer {
|
|
| 126 |
|
| 127 |
|
| 128 |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
|
|
| 129 |
with gr.Row():
|
| 130 |
model_choices = gr.Checkboxgroup(
|
| 131 |
choices=list(LLM_MODELS.values()),
|
|
@@ -212,7 +204,7 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
| 212 |
)
|
| 213 |
|
| 214 |
if __name__ == "__main__":
|
| 215 |
-
# Hugging Face ํ ํฐ์ด ์ค์ ๋์ด ์๋์ง ํ์ธ
|
| 216 |
if not HF_TOKEN:
|
| 217 |
print("Warning: HF_TOKEN environment variable is not set")
|
| 218 |
-
demo.launch()
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from huggingface_hub import InferenceClient
|
| 3 |
import os
|
| 4 |
+
from typing import List, Tuple
|
|
|
|
| 5 |
|
| 6 |
# Hugging Face ํ ํฐ ์ค์
|
|
|
|
| 7 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 8 |
|
| 9 |
# Available LLM models
|
|
|
|
| 24 |
"mistralai/Mistral-Nemo-Instruct-2407"
|
| 25 |
]
|
| 26 |
|
| 27 |
+
# Initialize clients with token
|
| 28 |
+
clients = {
|
| 29 |
+
model: InferenceClient(model, token=HF_TOKEN)
|
| 30 |
+
for model in LLM_MODELS.values()
|
| 31 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
def process_file(file) -> str:
|
| 34 |
if file is None:
|
|
|
|
| 37 |
return file.read().decode('utf-8')
|
| 38 |
return f"Uploaded file: {file.name}"
|
| 39 |
|
| 40 |
+
def respond_single(
|
| 41 |
+
client,
|
| 42 |
+
message: str,
|
| 43 |
+
history: List[Tuple[str, str]],
|
| 44 |
+
system_message: str,
|
| 45 |
+
max_tokens: int,
|
| 46 |
+
temperature: float,
|
| 47 |
+
top_p: float,
|
| 48 |
+
):
|
| 49 |
messages = [{"role": "system", "content": system_message}]
|
| 50 |
|
| 51 |
for user, assistant in history:
|
|
|
|
| 55 |
messages.append({"role": "assistant", "content": assistant})
|
| 56 |
|
| 57 |
messages.append({"role": "user", "content": message})
|
| 58 |
+
|
| 59 |
+
response = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
try:
|
| 61 |
+
for msg in client.text_generation(
|
| 62 |
+
prompt=message,
|
|
|
|
|
|
|
| 63 |
max_new_tokens=max_tokens,
|
| 64 |
+
stream=True,
|
| 65 |
temperature=temperature,
|
| 66 |
top_p=top_p,
|
| 67 |
+
):
|
| 68 |
+
response += msg
|
| 69 |
+
yield response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
except Exception as e:
|
| 71 |
yield f"Error: {str(e)}"
|
| 72 |
|
|
|
|
| 81 |
max_tokens: int,
|
| 82 |
temperature: float,
|
| 83 |
top_p: float,
|
| 84 |
+
):
|
| 85 |
if file:
|
| 86 |
file_content = process_file(file)
|
| 87 |
message = f"{message}\n\nFile content:\n{file_content}"
|
|
|
|
| 89 |
while len(selected_models) < 3:
|
| 90 |
selected_models.append(selected_models[-1])
|
| 91 |
|
| 92 |
+
def generate(client, history):
|
| 93 |
+
return respond_single(
|
| 94 |
+
client,
|
| 95 |
+
message,
|
| 96 |
+
history,
|
| 97 |
+
system_message,
|
| 98 |
+
max_tokens,
|
| 99 |
+
temperature,
|
| 100 |
+
top_p,
|
| 101 |
+
)
|
| 102 |
|
| 103 |
return (
|
| 104 |
+
generate(clients[selected_models[0]], history1),
|
| 105 |
+
generate(clients[selected_models[1]], history2),
|
| 106 |
+
generate(clients[selected_models[2]], history3),
|
| 107 |
)
|
| 108 |
|
| 109 |
+
|
| 110 |
+
|
| 111 |
css = """
|
| 112 |
footer {
|
| 113 |
visibility: hidden;
|
|
|
|
| 117 |
|
| 118 |
|
| 119 |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
| 120 |
+
|
| 121 |
with gr.Row():
|
| 122 |
model_choices = gr.Checkboxgroup(
|
| 123 |
choices=list(LLM_MODELS.values()),
|
|
|
|
| 204 |
)
|
| 205 |
|
| 206 |
if __name__ == "__main__":
|
|
|
|
| 207 |
if not HF_TOKEN:
|
| 208 |
print("Warning: HF_TOKEN environment variable is not set")
|
| 209 |
+
demo.launch()
|
| 210 |
+
|