Spaces:
Running
Running
| import os | |
| import sys | |
| import json | |
| from pathlib import Path | |
| import tempfile | |
| import shutil | |
| # Safe imports with fallbacks | |
| try: | |
| import gradio as gr | |
| except ImportError: | |
| print("Installing gradio...") | |
| os.system(f"{sys.executable} -m pip install gradio") | |
| import gradio as gr | |
| try: | |
| import subprocess | |
| except ImportError: | |
| subprocess = None | |
| try: | |
| import torch | |
| HAS_TORCH = True | |
| except ImportError: | |
| HAS_TORCH = False | |
| print("PyTorch not available, using CPU mode") | |
| # Ensure temp directories exist | |
| TEMP_DIR = tempfile.gettempdir() | |
| HF_CACHE_DIR = os.path.join(TEMP_DIR, "hf_cache") | |
| os.makedirs(HF_CACHE_DIR, exist_ok=True) | |
| # Set environment variables safely | |
| os.environ["GRADIO_SERVER_NAME"] = "0.0.0.0" | |
| os.environ["GRADIO_SERVER_PORT"] = "7860" | |
| os.environ["HF_HUB_CACHE"] = HF_CACHE_DIR | |
| os.environ["HUGGINGFACE_HUB_CACHE"] = HF_CACHE_DIR | |
| os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
| os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512" | |
| def safe_import(module_name, package_name=None): | |
| """Safely import a module with fallback""" | |
| if package_name is None: | |
| package_name = module_name | |
| try: | |
| return __import__(module_name.replace("-", "_")) | |
| except ImportError: | |
| print(f"Module {module_name} not found, functionality limited") | |
| return None | |
| def setup_environment(): | |
| """Setup environment with error handling""" | |
| dependencies = [ | |
| "sageattention==1.0.6", | |
| "insightface", | |
| "facexlib", | |
| "diffusers>=0.30.0", | |
| "transformers>=4.44.0", | |
| "accelerate>=0.34.0", | |
| "xformers", | |
| "opencv-python", | |
| "imageio[ffmpeg]", | |
| "moviepy", | |
| "librosa", | |
| "soundfile" | |
| ] | |
| for dep in dependencies: | |
| try: | |
| module_name = dep.split("==")[0].split(">=")[0].split("[")[0] | |
| safe_import(module_name) | |
| except Exception as e: | |
| print(f"Could not process {dep}: {e}") | |
| if subprocess: | |
| try: | |
| subprocess.run( | |
| [sys.executable, "-m", "pip", "install", dep], | |
| check=False, | |
| capture_output=True, | |
| timeout=30 | |
| ) | |
| except Exception as install_error: | |
| print(f"Failed to install {dep}: {install_error}") | |
| def download_essential_models(): | |
| """Pre-download models with full error handling""" | |
| try: | |
| from huggingface_hub import snapshot_download | |
| print("Attempting to download Hunyuan Video Avatar models...") | |
| try: | |
| snapshot_download( | |
| repo_id="tencent/HunyuanVideo-Avatar", | |
| cache_dir=HF_CACHE_DIR, | |
| allow_patterns=["*.safetensors", "*.json", "*.txt", "*.bin"], | |
| ignore_patterns=["*.mp4", "*.avi", "*.mov"], | |
| resume_download=True, | |
| max_workers=2 | |
| ) | |
| except Exception as e: | |
| print(f"Could not download HunyuanVideo-Avatar: {e}") | |
| try: | |
| snapshot_download( | |
| repo_id="tencent/HunyuanVideo", | |
| cache_dir=HF_CACHE_DIR, | |
| allow_patterns=["*.safetensors", "*.json", "*.txt"], | |
| ignore_patterns=["*.mp4", "*.avi"], | |
| resume_download=True, | |
| max_workers=2 | |
| ) | |
| except Exception as e: | |
| print(f"Could not download HunyuanVideo: {e}") | |
| print("Model download attempt completed") | |
| except ImportError: | |
| print("huggingface_hub not available, skipping model download") | |
| except Exception as e: | |
| print(f"Model download error: {e}") | |
| def create_hf_config(): | |
| """Create config with error handling""" | |
| config = { | |
| "model_settings": { | |
| "profile": 3, | |
| "quantize_transformer": True, | |
| "attention_mode": "sage", | |
| "compile": False, | |
| "teacache": "2.0" | |
| }, | |
| "avatar_settings": { | |
| "max_frames": 120, | |
| "resolution": "512x512", | |
| "emotion_control": True, | |
| "multi_character": True | |
| }, | |
| "memory_optimization": { | |
| "enable_vae_tiling": True, | |
| "enable_cpu_offload": True, | |
| "max_batch_size": 1, | |
| "gradient_checkpointing": True | |
| }, | |
| "audio_processing": { | |
| "sample_rate": 16000, | |
| "max_duration": 15, | |
| "supported_formats": ["wav", "mp3", "m4a"] | |
| } | |
| } | |
| config_path = os.path.join(TEMP_DIR, "hf_config.json") | |
| try: | |
| with open(config_path, "w", encoding='utf-8') as f: | |
| json.dump(config, f, indent=2) | |
| except Exception as e: | |
| print(f"Could not save config: {e}") | |
| config_path = None | |
| return config | |
| def create_dummy_video(output_path, duration=5, fps=24, width=512, height=512): | |
| """Create a dummy video file for testing""" | |
| try: | |
| import numpy as np | |
| import cv2 | |
| fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
| out = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) | |
| for i in range(duration * fps): | |
| # Create gradient frame | |
| frame = np.ones((height, width, 3), dtype=np.uint8) * 50 | |
| text = f"Frame {i+1}" | |
| cv2.putText(frame, text, (width//4, height//2), | |
| cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2) | |
| out.write(frame) | |
| out.release() | |
| return True | |
| except Exception as e: | |
| print(f"Could not create video with OpenCV: {e}") | |
| # Create empty file as fallback | |
| try: | |
| with open(output_path, 'wb') as f: | |
| f.write(b'dummy video content') | |
| return True | |
| except: | |
| return False | |
| class WanGPInterface: | |
| """WanGP Interface with full error handling""" | |
| def __init__(self, config): | |
| self.config = config or {} | |
| self.device = "cpu" | |
| if HAS_TORCH: | |
| try: | |
| self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
| except: | |
| self.device = "cpu" | |
| self.models_loaded = False | |
| def load_models(self): | |
| """Load models with error handling""" | |
| if self.models_loaded: | |
| return True | |
| try: | |
| print("Loading Hunyuan Video Avatar models (placeholder)...") | |
| # Placeholder for actual model loading | |
| import time | |
| time.sleep(0.5) # Simulate loading | |
| self.models_loaded = True | |
| print("β Models loaded successfully (simulated)!") | |
| return True | |
| except Exception as e: | |
| print(f"Error in model loading: {e}") | |
| self.models_loaded = False | |
| return False | |
| def generate_avatar_video(self, audio_file, avatar_image, prompt="", emotion="neutral"): | |
| """Generate avatar video with comprehensive error handling""" | |
| try: | |
| # Validate inputs | |
| if audio_file is None: | |
| return None, "β Error: No audio file provided" | |
| if avatar_image is None: | |
| return None, "β Error: No avatar image provided" | |
| # Ensure model is loaded | |
| if not self.load_models(): | |
| print("Models not loaded, using dummy generation") | |
| # Create output path | |
| output_filename = f"avatar_{os.getpid()}_{id(self)}.mp4" | |
| output_path = os.path.join(TEMP_DIR, output_filename) | |
| # Create dummy video | |
| if create_dummy_video(output_path, duration=5): | |
| if os.path.exists(output_path): | |
| return output_path, "β Video generated successfully (demo mode)!" | |
| else: | |
| return None, "β Error: Failed to create output file" | |
| else: | |
| return None, "β Error: Video generation failed" | |
| except Exception as e: | |
| error_msg = f"β Error in avatar generation: {str(e)}" | |
| print(error_msg) | |
| return None, error_msg | |
| def generate_video(self, prompt, duration=5, resolution="512x512"): | |
| """Generate video from text with error handling""" | |
| try: | |
| if not prompt: | |
| return "β Error: No prompt provided" | |
| # Parse resolution | |
| try: | |
| width, height = map(int, resolution.split('x')) | |
| except: | |
| width, height = 512, 512 | |
| # Ensure model is loaded | |
| if not self.load_models(): | |
| print("Models not loaded, using dummy generation") | |
| # Create output path | |
| output_filename = f"video_{os.getpid()}_{id(self)}.mp4" | |
| output_path = os.path.join(TEMP_DIR, output_filename) | |
| # Create dummy video | |
| if create_dummy_video(output_path, duration=int(duration), width=width, height=height): | |
| if os.path.exists(output_path): | |
| return output_path, f"β Generated video for prompt: {prompt[:50]}..." | |
| else: | |
| return None, "β Error: Failed to create output file" | |
| else: | |
| return None, "β Error: Video generation failed" | |
| except Exception as e: | |
| error_msg = f"β Error in video generation: {str(e)}" | |
| print(error_msg) | |
| return None, error_msg | |
| def create_gradio_interface(wangp_interface): | |
| """Create Gradio interface with error handling""" | |
| try: | |
| with gr.Blocks(title="WanGP v6.3 - Hunyuan Video Avatar", theme=gr.themes.Soft()) as demo: | |
| gr.HTML(""" | |
| <div style="text-align: center; margin-bottom: 20px;"> | |
| <h1>π WanGP v6.3 - Hunyuan Video Avatar</h1> | |
| <p>Advanced AI Video Generation with Audio-Driven Human Animation</p> | |
| <p style="color: orange;">β οΈ Running in Demo Mode - Using placeholder outputs</p> | |
| </div> | |
| """) | |
| with gr.Tabs(): | |
| # Avatar Generation Tab | |
| with gr.TabItem("π Avatar Generation"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| audio_input = gr.Audio( | |
| label="Audio Input", | |
| type="filepath" | |
| ) | |
| avatar_image = gr.Image( | |
| label="Avatar Image", | |
| type="filepath" | |
| ) | |
| emotion_control = gr.Dropdown( | |
| choices=["neutral", "happy", "sad", "angry", "surprised"], | |
| value="neutral", | |
| label="Emotion Control" | |
| ) | |
| avatar_prompt = gr.Textbox( | |
| label="Additional Prompt (Optional)", | |
| placeholder="Describe additional details...", | |
| value="" | |
| ) | |
| generate_avatar_btn = gr.Button("Generate Avatar Video", variant="primary") | |
| with gr.Column(): | |
| avatar_output = gr.Video(label="Generated Avatar Video") | |
| avatar_status = gr.Textbox(label="Status", interactive=False, value="Ready") | |
| # Text-to-Video Tab | |
| with gr.TabItem("πΉ Text to Video"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| video_prompt = gr.Textbox( | |
| label="Video Prompt", | |
| placeholder="Describe the video you want to generate...", | |
| lines=3, | |
| value="" | |
| ) | |
| duration_slider = gr.Slider( | |
| minimum=2, | |
| maximum=10, | |
| value=5, | |
| step=1, | |
| label="Duration (seconds)" | |
| ) | |
| resolution_dropdown = gr.Dropdown( | |
| choices=["512x512", "768x768", "1024x1024"], | |
| value="512x512", | |
| label="Resolution" | |
| ) | |
| generate_video_btn = gr.Button("Generate Video", variant="primary") | |
| with gr.Column(): | |
| video_output = gr.Video(label="Generated Video") | |
| video_status = gr.Textbox(label="Status", interactive=False, value="Ready") | |
| # Event handlers with error handling | |
| def safe_avatar_generation(*args): | |
| try: | |
| return wangp_interface.generate_avatar_video(*args) | |
| except Exception as e: | |
| return None, f"β Unexpected error: {str(e)}" | |
| def safe_video_generation(*args): | |
| try: | |
| result = wangp_interface.generate_video(*args) | |
| if isinstance(result, tuple): | |
| return result | |
| else: | |
| return None, result | |
| except Exception as e: | |
| return None, f"β Unexpected error: {str(e)}" | |
| generate_avatar_btn.click( | |
| fn=safe_avatar_generation, | |
| inputs=[audio_input, avatar_image, avatar_prompt, emotion_control], | |
| outputs=[avatar_output, avatar_status] | |
| ) | |
| generate_video_btn.click( | |
| fn=safe_video_generation, | |
| inputs=[video_prompt, duration_slider, resolution_dropdown], | |
| outputs=[video_output, video_status] | |
| ) | |
| gr.HTML(""" | |
| <div style="text-align: center; margin-top: 20px; color: #666;"> | |
| <p>Powered by Hunyuan Video Avatar & WanGP v6.3</p> | |
| <p style="font-size: 12px;">Note: This is a demonstration interface with placeholder outputs</p> | |
| </div> | |
| """) | |
| return demo | |
| except Exception as e: | |
| print(f"Error creating Gradio interface: {e}") | |
| # Return minimal interface | |
| demo = gr.Interface( | |
| fn=lambda x: f"Error: {str(e)}", | |
| inputs="text", | |
| outputs="text", | |
| title="WanGP v6.3 - Error State" | |
| ) | |
| return demo | |
| def main(): | |
| """Main function with comprehensive error handling""" | |
| print("π Starting WanGP v6.3 with Hunyuan Video Avatar...") | |
| try: | |
| # Setup environment | |
| setup_environment() | |
| except Exception as e: | |
| print(f"Environment setup warning: {e}") | |
| try: | |
| # Create configuration | |
| config = create_hf_config() | |
| except Exception as e: | |
| print(f"Config creation warning: {e}") | |
| config = {} | |
| try: | |
| # Download models in background | |
| download_essential_models() | |
| except Exception as e: | |
| print(f"Model download skipped: {e}") | |
| try: | |
| # Initialize WanGP interface | |
| wangp_interface = WanGPInterface(config) | |
| except Exception as e: | |
| print(f"Interface initialization error: {e}") | |
| # Create minimal interface | |
| class MinimalInterface: | |
| def __init__(self): | |
| self.config = {} | |
| def generate_avatar_video(self, *args): | |
| return None, "Service temporarily unavailable" | |
| def generate_video(self, *args): | |
| return None, "Service temporarily unavailable" | |
| wangp_interface = MinimalInterface() | |
| try: | |
| # Create and launch Gradio interface | |
| demo = create_gradio_interface(wangp_interface) | |
| print("β Setup complete! Launching application...") | |
| # Launch with error handling | |
| demo.launch( | |
| server_name="0.0.0.0", | |
| server_port=int(os.environ.get("GRADIO_SERVER_PORT", 7860)), | |
| share=False, | |
| debug=False, | |
| show_error=True, | |
| prevent_thread_lock=False | |
| ) | |
| except Exception as e: | |
| print(f"β Failed to launch Gradio: {e}") | |
| print("Attempting fallback launch...") | |
| try: | |
| # Minimal fallback | |
| import gradio as gr | |
| gr.Interface( | |
| fn=lambda x: "System Error - Please restart", | |
| inputs="text", | |
| outputs="text" | |
| ).launch() | |
| except: | |
| print("β Complete failure. Exiting.") | |
| sys.exit(1) | |
| if __name__ == "__main__": | |
| main() |