Spaces:
Running
Running
| import math | |
| import torch | |
| import torch.nn as nn | |
| from einops import rearrange, repeat | |
| from ..utils.helpers import to_2tuple | |
| class PatchEmbed(nn.Module): | |
| """2D Image to Patch Embedding | |
| Image to Patch Embedding using Conv2d | |
| A convolution based approach to patchifying a 2D image w/ embedding projection. | |
| Based on the impl in https://github.com/google-research/vision_transformer | |
| Hacked together by / Copyright 2020 Ross Wightman | |
| Remove the _assert function in forward function to be compatible with multi-resolution images. | |
| """ | |
| def __init__( | |
| self, | |
| patch_size=16, | |
| in_chans=3, | |
| embed_dim=768, | |
| norm_layer=None, | |
| flatten=True, | |
| bias=True, | |
| dtype=None, | |
| device=None, | |
| ): | |
| factory_kwargs = {"dtype": dtype, "device": device} | |
| super().__init__() | |
| patch_size = to_2tuple(patch_size) | |
| self.patch_size = patch_size | |
| self.flatten = flatten | |
| self.proj = nn.Conv3d( | |
| in_chans, | |
| embed_dim, | |
| kernel_size=patch_size, | |
| stride=patch_size, | |
| bias=bias, | |
| **factory_kwargs | |
| ) | |
| nn.init.xavier_uniform_(self.proj.weight.view(self.proj.weight.size(0), -1)) | |
| if bias: | |
| nn.init.zeros_(self.proj.bias) | |
| self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() | |
| def forward(self, x): | |
| x = self.proj(x) | |
| shape = x.shape | |
| if self.flatten: | |
| x = x.flatten(2).transpose(1, 2) # BCHW -> BNC | |
| x = self.norm(x) | |
| return x, shape | |
| class TextProjection(nn.Module): | |
| """ | |
| Projects text embeddings. Also handles dropout for classifier-free guidance. | |
| Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py | |
| """ | |
| def __init__(self, in_channels, hidden_size, act_layer, dtype=None, device=None): | |
| factory_kwargs = {"dtype": dtype, "device": device} | |
| super().__init__() | |
| self.linear_1 = nn.Linear( | |
| in_features=in_channels, | |
| out_features=hidden_size, | |
| bias=True, | |
| **factory_kwargs | |
| ) | |
| self.act_1 = act_layer() | |
| self.linear_2 = nn.Linear( | |
| in_features=hidden_size, | |
| out_features=hidden_size, | |
| bias=True, | |
| **factory_kwargs | |
| ) | |
| def forward(self, caption): | |
| hidden_states = self.linear_1(caption) | |
| hidden_states = self.act_1(hidden_states) | |
| hidden_states = self.linear_2(hidden_states) | |
| return hidden_states | |
| def timestep_embedding(t, dim, max_period=10000): | |
| """ | |
| Create sinusoidal timestep embeddings. | |
| Args: | |
| t (torch.Tensor): a 1-D Tensor of N indices, one per batch element. These may be fractional. | |
| dim (int): the dimension of the output. | |
| max_period (int): controls the minimum frequency of the embeddings. | |
| Returns: | |
| embedding (torch.Tensor): An (N, D) Tensor of positional embeddings. | |
| .. ref_link: https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py | |
| """ | |
| half = dim // 2 | |
| freqs = torch.exp( | |
| -math.log(max_period) | |
| * torch.arange(start=0, end=half, dtype=torch.float32) | |
| / half | |
| ).to(device=t.device) | |
| args = t[:, None].float() * freqs[None] | |
| embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
| if dim % 2: | |
| embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
| return embedding | |
| class TimestepEmbedder(nn.Module): | |
| """ | |
| Embeds scalar timesteps into vector representations. | |
| """ | |
| def __init__( | |
| self, | |
| hidden_size, | |
| act_layer, | |
| frequency_embedding_size=256, | |
| max_period=10000, | |
| out_size=None, | |
| dtype=None, | |
| device=None, | |
| ): | |
| factory_kwargs = {"dtype": dtype, "device": device} | |
| super().__init__() | |
| self.frequency_embedding_size = frequency_embedding_size | |
| self.max_period = max_period | |
| if out_size is None: | |
| out_size = hidden_size | |
| self.mlp = nn.Sequential( | |
| nn.Linear( | |
| frequency_embedding_size, hidden_size, bias=True, **factory_kwargs | |
| ), | |
| act_layer(), | |
| nn.Linear(hidden_size, out_size, bias=True, **factory_kwargs), | |
| ) | |
| nn.init.normal_(self.mlp[0].weight, std=0.02) | |
| nn.init.normal_(self.mlp[2].weight, std=0.02) | |
| def forward(self, t): | |
| t_freq = timestep_embedding( | |
| t, self.frequency_embedding_size, self.max_period | |
| ).type(self.mlp[0].weight.dtype) | |
| t_emb = self.mlp(t_freq) | |
| return t_emb | |