Spaces:
Running
Running
| from mmgp import offload | |
| import argparse | |
| import os | |
| import random | |
| from datetime import datetime | |
| from pathlib import Path | |
| from diffusers.utils import logging | |
| from typing import Optional, List, Union | |
| import yaml | |
| from wan.utils.utils import calculate_new_dimensions | |
| import imageio | |
| import json | |
| import numpy as np | |
| import torch | |
| from safetensors import safe_open | |
| from PIL import Image | |
| from transformers import ( | |
| T5EncoderModel, | |
| T5Tokenizer, | |
| AutoModelForCausalLM, | |
| AutoProcessor, | |
| AutoTokenizer, | |
| ) | |
| from huggingface_hub import hf_hub_download | |
| from .models.autoencoders.causal_video_autoencoder import ( | |
| CausalVideoAutoencoder, | |
| ) | |
| from .models.transformers.symmetric_patchifier import SymmetricPatchifier | |
| from .models.transformers.transformer3d import Transformer3DModel | |
| from .pipelines.pipeline_ltx_video import ( | |
| ConditioningItem, | |
| LTXVideoPipeline, | |
| LTXMultiScalePipeline, | |
| ) | |
| from .schedulers.rf import RectifiedFlowScheduler | |
| from .utils.skip_layer_strategy import SkipLayerStrategy | |
| from .models.autoencoders.latent_upsampler import LatentUpsampler | |
| from .pipelines import crf_compressor | |
| import cv2 | |
| MAX_HEIGHT = 720 | |
| MAX_WIDTH = 1280 | |
| MAX_NUM_FRAMES = 257 | |
| logger = logging.get_logger("LTX-Video") | |
| def get_total_gpu_memory(): | |
| if torch.cuda.is_available(): | |
| total_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3) | |
| return total_memory | |
| return 0 | |
| def get_device(): | |
| if torch.cuda.is_available(): | |
| return "cuda" | |
| elif torch.backends.mps.is_available(): | |
| return "mps" | |
| return "cpu" | |
| def load_image_to_tensor_with_resize_and_crop( | |
| image_input: Union[str, Image.Image], | |
| target_height: int = 512, | |
| target_width: int = 768, | |
| just_crop: bool = False, | |
| ) -> torch.Tensor: | |
| """Load and process an image into a tensor. | |
| Args: | |
| image_input: Either a file path (str) or a PIL Image object | |
| target_height: Desired height of output tensor | |
| target_width: Desired width of output tensor | |
| just_crop: If True, only crop the image to the target size without resizing | |
| """ | |
| if isinstance(image_input, str): | |
| image = Image.open(image_input).convert("RGB") | |
| elif isinstance(image_input, Image.Image): | |
| image = image_input | |
| else: | |
| raise ValueError("image_input must be either a file path or a PIL Image object") | |
| input_width, input_height = image.size | |
| aspect_ratio_target = target_width / target_height | |
| aspect_ratio_frame = input_width / input_height | |
| if aspect_ratio_frame > aspect_ratio_target: | |
| new_width = int(input_height * aspect_ratio_target) | |
| new_height = input_height | |
| x_start = (input_width - new_width) // 2 | |
| y_start = 0 | |
| else: | |
| new_width = input_width | |
| new_height = int(input_width / aspect_ratio_target) | |
| x_start = 0 | |
| y_start = (input_height - new_height) // 2 | |
| image = image.crop((x_start, y_start, x_start + new_width, y_start + new_height)) | |
| if not just_crop: | |
| image = image.resize((target_width, target_height)) | |
| image = np.array(image) | |
| image = cv2.GaussianBlur(image, (3, 3), 0) | |
| frame_tensor = torch.from_numpy(image).float() | |
| frame_tensor = crf_compressor.compress(frame_tensor / 255.0) * 255.0 | |
| frame_tensor = frame_tensor.permute(2, 0, 1) | |
| frame_tensor = (frame_tensor / 127.5) - 1.0 | |
| # Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width) | |
| return frame_tensor.unsqueeze(0).unsqueeze(2) | |
| def calculate_padding( | |
| source_height: int, source_width: int, target_height: int, target_width: int | |
| ) -> tuple[int, int, int, int]: | |
| # Calculate total padding needed | |
| pad_height = target_height - source_height | |
| pad_width = target_width - source_width | |
| # Calculate padding for each side | |
| pad_top = pad_height // 2 | |
| pad_bottom = pad_height - pad_top # Handles odd padding | |
| pad_left = pad_width // 2 | |
| pad_right = pad_width - pad_left # Handles odd padding | |
| # Return padded tensor | |
| # Padding format is (left, right, top, bottom) | |
| padding = (pad_left, pad_right, pad_top, pad_bottom) | |
| return padding | |
| def seed_everething(seed: int): | |
| random.seed(seed) | |
| np.random.seed(seed) | |
| torch.manual_seed(seed) | |
| if torch.cuda.is_available(): | |
| torch.cuda.manual_seed(seed) | |
| if torch.backends.mps.is_available(): | |
| torch.mps.manual_seed(seed) | |
| class LTXV: | |
| def __init__( | |
| self, | |
| model_filepath: str, | |
| text_encoder_filepath: str, | |
| dtype = torch.bfloat16, | |
| VAE_dtype = torch.bfloat16, | |
| mixed_precision_transformer = False | |
| ): | |
| # if dtype == torch.float16: | |
| dtype = torch.bfloat16 | |
| self.mixed_precision_transformer = mixed_precision_transformer | |
| self.distilled = any("lora" in name for name in model_filepath) | |
| model_filepath = [name for name in model_filepath if not "lora" in name ] | |
| # with safe_open(ckpt_path, framework="pt") as f: | |
| # metadata = f.metadata() | |
| # config_str = metadata.get("config") | |
| # configs = json.loads(config_str) | |
| # allowed_inference_steps = configs.get("allowed_inference_steps", None) | |
| # transformer = Transformer3DModel.from_pretrained(ckpt_path) | |
| # transformer = offload.fast_load_transformers_model("c:/temp/ltxdistilled/diffusion_pytorch_model-00001-of-00006.safetensors", forcedConfigPath="c:/temp/ltxdistilled/config.json") | |
| # vae = CausalVideoAutoencoder.from_pretrained(ckpt_path) | |
| vae = offload.fast_load_transformers_model("ckpts/ltxv_0.9.7_VAE.safetensors", modelClass=CausalVideoAutoencoder) | |
| # if VAE_dtype == torch.float16: | |
| VAE_dtype = torch.bfloat16 | |
| vae = vae.to(VAE_dtype) | |
| vae._model_dtype = VAE_dtype | |
| # vae = offload.fast_load_transformers_model("vae.safetensors", modelClass=CausalVideoAutoencoder, modelPrefix= "vae", forcedConfigPath="config_vae.json") | |
| # offload.save_model(vae, "vae.safetensors", config_file_path="config_vae.json") | |
| # model_filepath = "c:/temp/ltxd/ltxv-13b-0.9.7-distilled.safetensors" | |
| transformer = offload.fast_load_transformers_model(model_filepath, modelClass=Transformer3DModel) | |
| # offload.save_model(transformer, "ckpts/ltxv_0.9.7_13B_distilled_bf16.safetensors", config_file_path= "c:/temp/ltxd/config.json") | |
| # offload.save_model(transformer, "ckpts/ltxv_0.9.7_13B_distilled_quanto_bf16_int8.safetensors", do_quantize= True, config_file_path="c:/temp/ltxd/config.json") | |
| # transformer = offload.fast_load_transformers_model(model_filepath, modelClass=Transformer3DModel) | |
| transformer._model_dtype = dtype | |
| if mixed_precision_transformer: | |
| transformer._lock_dtype = torch.float | |
| scheduler = RectifiedFlowScheduler.from_pretrained("ckpts/ltxv_scheduler.json") | |
| # transformer = offload.fast_load_transformers_model("ltx_13B_quanto_bf16_int8.safetensors", modelClass=Transformer3DModel, modelPrefix= "model.diffusion_model", forcedConfigPath="config_transformer.json") | |
| # offload.save_model(transformer, "ltx_13B_quanto_bf16_int8.safetensors", do_quantize= True, config_file_path="config_transformer.json") | |
| latent_upsampler = LatentUpsampler.from_pretrained("ckpts/ltxv_0.9.7_spatial_upscaler.safetensors").to("cpu").eval() | |
| latent_upsampler.to(VAE_dtype) | |
| latent_upsampler._model_dtype = VAE_dtype | |
| allowed_inference_steps = None | |
| # text_encoder = T5EncoderModel.from_pretrained( | |
| # "PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder" | |
| # ) | |
| # text_encoder.to(torch.bfloat16) | |
| # offload.save_model(text_encoder, "T5_xxl_1.1_enc_bf16.safetensors", config_file_path="T5_config.json") | |
| # offload.save_model(text_encoder, "T5_xxl_1.1_enc_quanto_bf16_int8.safetensors", do_quantize= True, config_file_path="T5_config.json") | |
| text_encoder = offload.fast_load_transformers_model(text_encoder_filepath) | |
| patchifier = SymmetricPatchifier(patch_size=1) | |
| tokenizer = T5Tokenizer.from_pretrained( "ckpts/T5_xxl_1.1") | |
| enhance_prompt = False | |
| if enhance_prompt: | |
| prompt_enhancer_image_caption_model = AutoModelForCausalLM.from_pretrained( "ckpts/Florence2", trust_remote_code=True) | |
| prompt_enhancer_image_caption_processor = AutoProcessor.from_pretrained( "ckpts/Florence2", trust_remote_code=True) | |
| prompt_enhancer_llm_model = offload.fast_load_transformers_model("ckpts/Llama3_2_quanto_bf16_int8.safetensors") | |
| prompt_enhancer_llm_tokenizer = AutoTokenizer.from_pretrained("ckpts/Llama3_2") | |
| else: | |
| prompt_enhancer_image_caption_model = None | |
| prompt_enhancer_image_caption_processor = None | |
| prompt_enhancer_llm_model = None | |
| prompt_enhancer_llm_tokenizer = None | |
| if prompt_enhancer_image_caption_model != None: | |
| pipe["prompt_enhancer_image_caption_model"] = prompt_enhancer_image_caption_model | |
| prompt_enhancer_image_caption_model._model_dtype = torch.float | |
| pipe["prompt_enhancer_llm_model"] = prompt_enhancer_llm_model | |
| # offload.profile(pipe, profile_no=5, extraModelsToQuantize = None, quantizeTransformer = False, budgets = { "prompt_enhancer_llm_model" : 10000, "prompt_enhancer_image_caption_model" : 10000, "vae" : 3000, "*" : 100 }, verboseLevel=2) | |
| # Use submodels for the pipeline | |
| submodel_dict = { | |
| "transformer": transformer, | |
| "patchifier": patchifier, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| "prompt_enhancer_image_caption_model": prompt_enhancer_image_caption_model, | |
| "prompt_enhancer_image_caption_processor": prompt_enhancer_image_caption_processor, | |
| "prompt_enhancer_llm_model": prompt_enhancer_llm_model, | |
| "prompt_enhancer_llm_tokenizer": prompt_enhancer_llm_tokenizer, | |
| "allowed_inference_steps": allowed_inference_steps, | |
| } | |
| pipeline = LTXVideoPipeline(**submodel_dict) | |
| pipeline = LTXMultiScalePipeline(pipeline, latent_upsampler=latent_upsampler) | |
| self.pipeline = pipeline | |
| self.model = transformer | |
| self.vae = vae | |
| # return pipeline, pipe | |
| def generate( | |
| self, | |
| input_prompt: str, | |
| n_prompt: str, | |
| image_start = None, | |
| image_end = None, | |
| input_video = None, | |
| sampling_steps = 50, | |
| image_cond_noise_scale: float = 0.15, | |
| input_media_path: Optional[str] = None, | |
| strength: Optional[float] = 1.0, | |
| seed: int = 42, | |
| height: Optional[int] = 704, | |
| width: Optional[int] = 1216, | |
| frame_num: int = 81, | |
| frame_rate: int = 30, | |
| fit_into_canvas = True, | |
| callback=None, | |
| device: Optional[str] = None, | |
| VAE_tile_size = None, | |
| **kwargs, | |
| ): | |
| num_inference_steps1 = sampling_steps | |
| num_inference_steps2 = sampling_steps #10 | |
| conditioning_strengths = None | |
| conditioning_media_paths = [] | |
| conditioning_start_frames = [] | |
| if input_video != None: | |
| conditioning_media_paths.append(input_video) | |
| conditioning_start_frames.append(0) | |
| height, width = input_video.shape[-2:] | |
| else: | |
| if image_start != None: | |
| frame_width, frame_height = image_start.size | |
| height, width = calculate_new_dimensions(height, width, frame_height, frame_width, fit_into_canvas, 32) | |
| conditioning_media_paths.append(image_start) | |
| conditioning_start_frames.append(0) | |
| if image_end != None: | |
| conditioning_media_paths.append(image_end) | |
| conditioning_start_frames.append(frame_num-1) | |
| if len(conditioning_media_paths) == 0: | |
| conditioning_media_paths = None | |
| conditioning_start_frames = None | |
| if self.distilled : | |
| pipeline_config = "ltx_video/configs/ltxv-13b-0.9.7-distilled.yaml" | |
| else: | |
| pipeline_config = "ltx_video/configs/ltxv-13b-0.9.7-dev.yaml" | |
| # check if pipeline_config is a file | |
| if not os.path.isfile(pipeline_config): | |
| raise ValueError(f"Pipeline config file {pipeline_config} does not exist") | |
| with open(pipeline_config, "r") as f: | |
| pipeline_config = yaml.safe_load(f) | |
| # Validate conditioning arguments | |
| if conditioning_media_paths: | |
| # Use default strengths of 1.0 | |
| if not conditioning_strengths: | |
| conditioning_strengths = [1.0] * len(conditioning_media_paths) | |
| if not conditioning_start_frames: | |
| raise ValueError( | |
| "If `conditioning_media_paths` is provided, " | |
| "`conditioning_start_frames` must also be provided" | |
| ) | |
| if len(conditioning_media_paths) != len(conditioning_strengths) or len( | |
| conditioning_media_paths | |
| ) != len(conditioning_start_frames): | |
| raise ValueError( | |
| "`conditioning_media_paths`, `conditioning_strengths`, " | |
| "and `conditioning_start_frames` must have the same length" | |
| ) | |
| if any(s < 0 or s > 1 for s in conditioning_strengths): | |
| raise ValueError("All conditioning strengths must be between 0 and 1") | |
| if any(f < 0 or f >= frame_num for f in conditioning_start_frames): | |
| raise ValueError( | |
| f"All conditioning start frames must be between 0 and {frame_num-1}" | |
| ) | |
| # Adjust dimensions to be divisible by 32 and num_frames to be (N * 8 + 1) | |
| height_padded = ((height - 1) // 32 + 1) * 32 | |
| width_padded = ((width - 1) // 32 + 1) * 32 | |
| num_frames_padded = ((frame_num - 2) // 8 + 1) * 8 + 1 | |
| padding = calculate_padding(height, width, height_padded, width_padded) | |
| logger.warning( | |
| f"Padded dimensions: {height_padded}x{width_padded}x{num_frames_padded}" | |
| ) | |
| # prompt_enhancement_words_threshold = pipeline_config[ | |
| # "prompt_enhancement_words_threshold" | |
| # ] | |
| # prompt_word_count = len(prompt.split()) | |
| # enhance_prompt = ( | |
| # prompt_enhancement_words_threshold > 0 | |
| # and prompt_word_count < prompt_enhancement_words_threshold | |
| # ) | |
| # # enhance_prompt = False | |
| # if prompt_enhancement_words_threshold > 0 and not enhance_prompt: | |
| # logger.info( | |
| # f"Prompt has {prompt_word_count} words, which exceeds the threshold of {prompt_enhancement_words_threshold}. Prompt enhancement disabled." | |
| # ) | |
| seed_everething(seed) | |
| device = device or get_device() | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| media_item = None | |
| if input_media_path: | |
| media_item = load_media_file( | |
| media_path=input_media_path, | |
| height=height, | |
| width=width, | |
| max_frames=num_frames_padded, | |
| padding=padding, | |
| ) | |
| conditioning_items = ( | |
| prepare_conditioning( | |
| conditioning_media_paths=conditioning_media_paths, | |
| conditioning_strengths=conditioning_strengths, | |
| conditioning_start_frames=conditioning_start_frames, | |
| height=height, | |
| width=width, | |
| num_frames=frame_num, | |
| padding=padding, | |
| pipeline=self.pipeline, | |
| ) | |
| if conditioning_media_paths | |
| else None | |
| ) | |
| stg_mode = pipeline_config.get("stg_mode", "attention_values") | |
| del pipeline_config["stg_mode"] | |
| if stg_mode.lower() == "stg_av" or stg_mode.lower() == "attention_values": | |
| skip_layer_strategy = SkipLayerStrategy.AttentionValues | |
| elif stg_mode.lower() == "stg_as" or stg_mode.lower() == "attention_skip": | |
| skip_layer_strategy = SkipLayerStrategy.AttentionSkip | |
| elif stg_mode.lower() == "stg_r" or stg_mode.lower() == "residual": | |
| skip_layer_strategy = SkipLayerStrategy.Residual | |
| elif stg_mode.lower() == "stg_t" or stg_mode.lower() == "transformer_block": | |
| skip_layer_strategy = SkipLayerStrategy.TransformerBlock | |
| else: | |
| raise ValueError(f"Invalid spatiotemporal guidance mode: {stg_mode}") | |
| # Prepare input for the pipeline | |
| sample = { | |
| "prompt": input_prompt, | |
| "prompt_attention_mask": None, | |
| "negative_prompt": n_prompt, | |
| "negative_prompt_attention_mask": None, | |
| } | |
| images = self.pipeline( | |
| **pipeline_config, | |
| ltxv_model = self, | |
| num_inference_steps1 = num_inference_steps1, | |
| num_inference_steps2 = num_inference_steps2, | |
| skip_layer_strategy=skip_layer_strategy, | |
| generator=generator, | |
| output_type="pt", | |
| callback_on_step_end=None, | |
| height=height_padded, | |
| width=width_padded, | |
| num_frames=num_frames_padded, | |
| frame_rate=frame_rate, | |
| **sample, | |
| media_items=media_item, | |
| strength=strength, | |
| conditioning_items=conditioning_items, | |
| is_video=True, | |
| vae_per_channel_normalize=True, | |
| image_cond_noise_scale=image_cond_noise_scale, | |
| mixed_precision=pipeline_config.get("mixed", self.mixed_precision_transformer), | |
| callback=callback, | |
| VAE_tile_size = VAE_tile_size, | |
| device=device, | |
| # enhance_prompt=enhance_prompt, | |
| ) | |
| if images == None: | |
| return None | |
| # Crop the padded images to the desired resolution and number of frames | |
| (pad_left, pad_right, pad_top, pad_bottom) = padding | |
| pad_bottom = -pad_bottom | |
| pad_right = -pad_right | |
| if pad_bottom == 0: | |
| pad_bottom = images.shape[3] | |
| if pad_right == 0: | |
| pad_right = images.shape[4] | |
| images = images[:, :, :frame_num, pad_top:pad_bottom, pad_left:pad_right] | |
| images = images.sub_(0.5).mul_(2).squeeze(0) | |
| return images | |
| def prepare_conditioning( | |
| conditioning_media_paths: List[str], | |
| conditioning_strengths: List[float], | |
| conditioning_start_frames: List[int], | |
| height: int, | |
| width: int, | |
| num_frames: int, | |
| padding: tuple[int, int, int, int], | |
| pipeline: LTXVideoPipeline, | |
| ) -> Optional[List[ConditioningItem]]: | |
| """Prepare conditioning items based on input media paths and their parameters. | |
| Args: | |
| conditioning_media_paths: List of paths to conditioning media (images or videos) | |
| conditioning_strengths: List of conditioning strengths for each media item | |
| conditioning_start_frames: List of frame indices where each item should be applied | |
| height: Height of the output frames | |
| width: Width of the output frames | |
| num_frames: Number of frames in the output video | |
| padding: Padding to apply to the frames | |
| pipeline: LTXVideoPipeline object used for condition video trimming | |
| Returns: | |
| A list of ConditioningItem objects. | |
| """ | |
| conditioning_items = [] | |
| for path, strength, start_frame in zip( | |
| conditioning_media_paths, conditioning_strengths, conditioning_start_frames | |
| ): | |
| if isinstance(path, Image.Image): | |
| num_input_frames = orig_num_input_frames = 1 | |
| else: | |
| num_input_frames = orig_num_input_frames = get_media_num_frames(path) | |
| if hasattr(pipeline, "trim_conditioning_sequence") and callable( | |
| getattr(pipeline, "trim_conditioning_sequence") | |
| ): | |
| num_input_frames = pipeline.trim_conditioning_sequence( | |
| start_frame, orig_num_input_frames, num_frames | |
| ) | |
| if num_input_frames < orig_num_input_frames: | |
| logger.warning( | |
| f"Trimming conditioning video {path} from {orig_num_input_frames} to {num_input_frames} frames." | |
| ) | |
| media_tensor = load_media_file( | |
| media_path=path, | |
| height=height, | |
| width=width, | |
| max_frames=num_input_frames, | |
| padding=padding, | |
| just_crop=True, | |
| ) | |
| conditioning_items.append(ConditioningItem(media_tensor, start_frame, strength)) | |
| return conditioning_items | |
| def get_media_num_frames(media_path: str) -> int: | |
| if isinstance(media_path, Image.Image): | |
| return 1 | |
| elif torch.is_tensor(media_path): | |
| return media_path.shape[1] | |
| elif isinstance(media_path, str) and any( media_path.lower().endswith(ext) for ext in [".mp4", ".avi", ".mov", ".mkv"]): | |
| reader = imageio.get_reader(media_path) | |
| return min(reader.count_frames(), max_frames) | |
| else: | |
| raise Exception("video format not supported") | |
| def load_media_file( | |
| media_path: str, | |
| height: int, | |
| width: int, | |
| max_frames: int, | |
| padding: tuple[int, int, int, int], | |
| just_crop: bool = False, | |
| ) -> torch.Tensor: | |
| if isinstance(media_path, Image.Image): | |
| # Input image | |
| media_tensor = load_image_to_tensor_with_resize_and_crop( | |
| media_path, height, width, just_crop=just_crop | |
| ) | |
| media_tensor = torch.nn.functional.pad(media_tensor, padding) | |
| elif torch.is_tensor(media_path): | |
| media_tensor = media_path.unsqueeze(0) | |
| num_input_frames = media_tensor.shape[2] | |
| elif isinstance(media_path, str) and any( media_path.lower().endswith(ext) for ext in [".mp4", ".avi", ".mov", ".mkv"]): | |
| reader = imageio.get_reader(media_path) | |
| num_input_frames = min(reader.count_frames(), max_frames) | |
| # Read and preprocess the relevant frames from the video file. | |
| frames = [] | |
| for i in range(num_input_frames): | |
| frame = Image.fromarray(reader.get_data(i)) | |
| frame_tensor = load_image_to_tensor_with_resize_and_crop( | |
| frame, height, width, just_crop=just_crop | |
| ) | |
| frame_tensor = torch.nn.functional.pad(frame_tensor, padding) | |
| frames.append(frame_tensor) | |
| reader.close() | |
| # Stack frames along the temporal dimension | |
| media_tensor = torch.cat(frames, dim=2) | |
| else: | |
| raise Exception("video format not supported") | |
| return media_tensor | |
| if __name__ == "__main__": | |
| main() | |