Spaces:
Running
Running
| import json | |
| import os | |
| from functools import partial | |
| from types import SimpleNamespace | |
| from typing import Any, Mapping, Optional, Tuple, Union, List | |
| from pathlib import Path | |
| import torch | |
| import numpy as np | |
| from einops import rearrange | |
| from torch import nn | |
| from diffusers.utils import logging | |
| import torch.nn.functional as F | |
| from diffusers.models.embeddings import PixArtAlphaCombinedTimestepSizeEmbeddings | |
| from safetensors import safe_open | |
| from ltx_video.models.autoencoders.conv_nd_factory import make_conv_nd, make_linear_nd | |
| from ltx_video.models.autoencoders.pixel_norm import PixelNorm | |
| from ltx_video.models.autoencoders.pixel_shuffle import PixelShuffleND | |
| from ltx_video.models.autoencoders.vae import AutoencoderKLWrapper | |
| from ltx_video.models.transformers.attention import Attention | |
| from ltx_video.utils.diffusers_config_mapping import ( | |
| diffusers_and_ours_config_mapping, | |
| make_hashable_key, | |
| VAE_KEYS_RENAME_DICT, | |
| ) | |
| PER_CHANNEL_STATISTICS_PREFIX = "per_channel_statistics." | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class CausalVideoAutoencoder(AutoencoderKLWrapper): | |
| def from_pretrained( | |
| cls, | |
| pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], | |
| *args, | |
| **kwargs, | |
| ): | |
| pretrained_model_name_or_path = Path(pretrained_model_name_or_path) | |
| if ( | |
| pretrained_model_name_or_path.is_dir() | |
| and (pretrained_model_name_or_path / "autoencoder.pth").exists() | |
| ): | |
| config_local_path = pretrained_model_name_or_path / "config.json" | |
| config = cls.load_config(config_local_path, **kwargs) | |
| model_local_path = pretrained_model_name_or_path / "autoencoder.pth" | |
| state_dict = torch.load(model_local_path, map_location=torch.device("cpu")) | |
| statistics_local_path = ( | |
| pretrained_model_name_or_path / "per_channel_statistics.json" | |
| ) | |
| if statistics_local_path.exists(): | |
| with open(statistics_local_path, "r") as file: | |
| data = json.load(file) | |
| transposed_data = list(zip(*data["data"])) | |
| data_dict = { | |
| col: torch.tensor(vals) | |
| for col, vals in zip(data["columns"], transposed_data) | |
| } | |
| std_of_means = data_dict["std-of-means"] | |
| mean_of_means = data_dict.get( | |
| "mean-of-means", torch.zeros_like(data_dict["std-of-means"]) | |
| ) | |
| state_dict[f"{PER_CHANNEL_STATISTICS_PREFIX}std-of-means"] = ( | |
| std_of_means | |
| ) | |
| state_dict[f"{PER_CHANNEL_STATISTICS_PREFIX}mean-of-means"] = ( | |
| mean_of_means | |
| ) | |
| elif pretrained_model_name_or_path.is_dir(): | |
| config_path = pretrained_model_name_or_path / "vae" / "config.json" | |
| with open(config_path, "r") as f: | |
| config = make_hashable_key(json.load(f)) | |
| assert config in diffusers_and_ours_config_mapping, ( | |
| "Provided diffusers checkpoint config for VAE is not suppported. " | |
| "We only support diffusers configs found in Lightricks/LTX-Video." | |
| ) | |
| config = diffusers_and_ours_config_mapping[config] | |
| state_dict_path = ( | |
| pretrained_model_name_or_path | |
| / "vae" | |
| / "diffusion_pytorch_model.safetensors" | |
| ) | |
| state_dict = {} | |
| with safe_open(state_dict_path, framework="pt", device="cpu") as f: | |
| for k in f.keys(): | |
| state_dict[k] = f.get_tensor(k) | |
| for key in list(state_dict.keys()): | |
| new_key = key | |
| for replace_key, rename_key in VAE_KEYS_RENAME_DICT.items(): | |
| new_key = new_key.replace(replace_key, rename_key) | |
| state_dict[new_key] = state_dict.pop(key) | |
| elif pretrained_model_name_or_path.is_file() and str( | |
| pretrained_model_name_or_path | |
| ).endswith(".safetensors"): | |
| state_dict = {} | |
| with safe_open( | |
| pretrained_model_name_or_path, framework="pt", device="cpu" | |
| ) as f: | |
| metadata = f.metadata() | |
| for k in f.keys(): | |
| state_dict[k] = f.get_tensor(k) | |
| configs = json.loads(metadata["config"]) | |
| config = configs["vae"] | |
| video_vae = cls.from_config(config) | |
| if "torch_dtype" in kwargs: | |
| video_vae.to(kwargs["torch_dtype"]) | |
| video_vae.load_state_dict(state_dict) | |
| return video_vae | |
| def from_config(config): | |
| assert ( | |
| config["_class_name"] == "CausalVideoAutoencoder" | |
| ), "config must have _class_name=CausalVideoAutoencoder" | |
| if isinstance(config["dims"], list): | |
| config["dims"] = tuple(config["dims"]) | |
| assert config["dims"] in [2, 3, (2, 1)], "dims must be 2, 3 or (2, 1)" | |
| double_z = config.get("double_z", True) | |
| latent_log_var = config.get( | |
| "latent_log_var", "per_channel" if double_z else "none" | |
| ) | |
| use_quant_conv = config.get("use_quant_conv", True) | |
| normalize_latent_channels = config.get("normalize_latent_channels", False) | |
| if use_quant_conv and latent_log_var in ["uniform", "constant"]: | |
| raise ValueError( | |
| f"latent_log_var={latent_log_var} requires use_quant_conv=False" | |
| ) | |
| encoder = Encoder( | |
| dims=config["dims"], | |
| in_channels=config.get("in_channels", 3), | |
| out_channels=config["latent_channels"], | |
| blocks=config.get("encoder_blocks", config.get("blocks")), | |
| patch_size=config.get("patch_size", 1), | |
| latent_log_var=latent_log_var, | |
| norm_layer=config.get("norm_layer", "group_norm"), | |
| base_channels=config.get("encoder_base_channels", 128), | |
| spatial_padding_mode=config.get("spatial_padding_mode", "zeros"), | |
| ) | |
| decoder = Decoder( | |
| dims=config["dims"], | |
| in_channels=config["latent_channels"], | |
| out_channels=config.get("out_channels", 3), | |
| blocks=config.get("decoder_blocks", config.get("blocks")), | |
| patch_size=config.get("patch_size", 1), | |
| norm_layer=config.get("norm_layer", "group_norm"), | |
| causal=config.get("causal_decoder", False), | |
| timestep_conditioning=config.get("timestep_conditioning", False), | |
| base_channels=config.get("decoder_base_channels", 128), | |
| spatial_padding_mode=config.get("spatial_padding_mode", "zeros"), | |
| ) | |
| dims = config["dims"] | |
| return CausalVideoAutoencoder( | |
| encoder=encoder, | |
| decoder=decoder, | |
| latent_channels=config["latent_channels"], | |
| dims=dims, | |
| use_quant_conv=use_quant_conv, | |
| normalize_latent_channels=normalize_latent_channels, | |
| ) | |
| def config(self): | |
| return SimpleNamespace( | |
| _class_name="CausalVideoAutoencoder", | |
| dims=self.dims, | |
| in_channels=self.encoder.conv_in.in_channels // self.encoder.patch_size**2, | |
| out_channels=self.decoder.conv_out.out_channels | |
| // self.decoder.patch_size**2, | |
| latent_channels=self.decoder.conv_in.in_channels, | |
| encoder_blocks=self.encoder.blocks_desc, | |
| decoder_blocks=self.decoder.blocks_desc, | |
| scaling_factor=1.0, | |
| norm_layer=self.encoder.norm_layer, | |
| patch_size=self.encoder.patch_size, | |
| latent_log_var=self.encoder.latent_log_var, | |
| use_quant_conv=self.use_quant_conv, | |
| causal_decoder=self.decoder.causal, | |
| timestep_conditioning=self.decoder.timestep_conditioning, | |
| normalize_latent_channels=self.normalize_latent_channels, | |
| ) | |
| def is_video_supported(self): | |
| """ | |
| Check if the model supports video inputs of shape (B, C, F, H, W). Otherwise, the model only supports 2D images. | |
| """ | |
| return self.dims != 2 | |
| def spatial_downscale_factor(self): | |
| return ( | |
| 2 | |
| ** len( | |
| [ | |
| block | |
| for block in self.encoder.blocks_desc | |
| if block[0] | |
| in [ | |
| "compress_space", | |
| "compress_all", | |
| "compress_all_res", | |
| "compress_space_res", | |
| ] | |
| ] | |
| ) | |
| * self.encoder.patch_size | |
| ) | |
| def temporal_downscale_factor(self): | |
| return 2 ** len( | |
| [ | |
| block | |
| for block in self.encoder.blocks_desc | |
| if block[0] | |
| in [ | |
| "compress_time", | |
| "compress_all", | |
| "compress_all_res", | |
| "compress_space_res", | |
| ] | |
| ] | |
| ) | |
| def to_json_string(self) -> str: | |
| import json | |
| return json.dumps(self.config.__dict__) | |
| def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True, assign = True): | |
| if any([key.startswith("vae.") for key in state_dict.keys()]): | |
| state_dict = { | |
| key.replace("vae.", ""): value | |
| for key, value in state_dict.items() | |
| if key.startswith("vae.") | |
| } | |
| ckpt_state_dict = { | |
| key: value | |
| for key, value in state_dict.items() | |
| if not key.startswith(PER_CHANNEL_STATISTICS_PREFIX) | |
| } | |
| model_keys = set(name for name, _ in self.named_modules()) | |
| key_mapping = { | |
| ".resnets.": ".res_blocks.", | |
| "downsamplers.0": "downsample", | |
| "upsamplers.0": "upsample", | |
| } | |
| converted_state_dict = {} | |
| for key, value in ckpt_state_dict.items(): | |
| for k, v in key_mapping.items(): | |
| key = key.replace(k, v) | |
| key_prefix = ".".join(key.split(".")[:-1]) | |
| if "norm" in key and key_prefix not in model_keys: | |
| logger.info( | |
| f"Removing key {key} from state_dict as it is not present in the model" | |
| ) | |
| continue | |
| converted_state_dict[key] = value | |
| a,b = super().load_state_dict(converted_state_dict, strict=strict, assign=assign) | |
| data_dict = { | |
| key.removeprefix(PER_CHANNEL_STATISTICS_PREFIX): value | |
| for key, value in state_dict.items() | |
| if key.startswith(PER_CHANNEL_STATISTICS_PREFIX) | |
| } | |
| if len(data_dict) > 0: | |
| self.register_buffer("std_of_means", data_dict["std-of-means"],) | |
| self.register_buffer( | |
| "mean_of_means", | |
| data_dict.get( | |
| "mean-of-means", torch.zeros_like(data_dict["std-of-means"]) | |
| ), | |
| ) | |
| return a, b | |
| def last_layer(self): | |
| if hasattr(self.decoder, "conv_out"): | |
| if isinstance(self.decoder.conv_out, nn.Sequential): | |
| last_layer = self.decoder.conv_out[-1] | |
| else: | |
| last_layer = self.decoder.conv_out | |
| else: | |
| last_layer = self.decoder.layers[-1] | |
| return last_layer | |
| def set_use_tpu_flash_attention(self): | |
| for block in self.decoder.up_blocks: | |
| if isinstance(block, UNetMidBlock3D) and block.attention_blocks: | |
| for attention_block in block.attention_blocks: | |
| attention_block.set_use_tpu_flash_attention() | |
| class Encoder(nn.Module): | |
| r""" | |
| The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation. | |
| Args: | |
| dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3): | |
| The number of dimensions to use in convolutions. | |
| in_channels (`int`, *optional*, defaults to 3): | |
| The number of input channels. | |
| out_channels (`int`, *optional*, defaults to 3): | |
| The number of output channels. | |
| blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`): | |
| The blocks to use. Each block is a tuple of the block name and the number of layers. | |
| base_channels (`int`, *optional*, defaults to 128): | |
| The number of output channels for the first convolutional layer. | |
| norm_num_groups (`int`, *optional*, defaults to 32): | |
| The number of groups for normalization. | |
| patch_size (`int`, *optional*, defaults to 1): | |
| The patch size to use. Should be a power of 2. | |
| norm_layer (`str`, *optional*, defaults to `group_norm`): | |
| The normalization layer to use. Can be either `group_norm` or `pixel_norm`. | |
| latent_log_var (`str`, *optional*, defaults to `per_channel`): | |
| The number of channels for the log variance. Can be either `per_channel`, `uniform`, `constant` or `none`. | |
| """ | |
| def __init__( | |
| self, | |
| dims: Union[int, Tuple[int, int]] = 3, | |
| in_channels: int = 3, | |
| out_channels: int = 3, | |
| blocks: List[Tuple[str, int | dict]] = [("res_x", 1)], | |
| base_channels: int = 128, | |
| norm_num_groups: int = 32, | |
| patch_size: Union[int, Tuple[int]] = 1, | |
| norm_layer: str = "group_norm", # group_norm, pixel_norm | |
| latent_log_var: str = "per_channel", | |
| spatial_padding_mode: str = "zeros", | |
| ): | |
| super().__init__() | |
| self.patch_size = patch_size | |
| self.norm_layer = norm_layer | |
| self.latent_channels = out_channels | |
| self.latent_log_var = latent_log_var | |
| self.blocks_desc = blocks | |
| in_channels = in_channels * patch_size**2 | |
| output_channel = base_channels | |
| self.conv_in = make_conv_nd( | |
| dims=dims, | |
| in_channels=in_channels, | |
| out_channels=output_channel, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| causal=True, | |
| spatial_padding_mode=spatial_padding_mode, | |
| ) | |
| self.down_blocks = nn.ModuleList([]) | |
| for block_name, block_params in blocks: | |
| input_channel = output_channel | |
| if isinstance(block_params, int): | |
| block_params = {"num_layers": block_params} | |
| if block_name == "res_x": | |
| block = UNetMidBlock3D( | |
| dims=dims, | |
| in_channels=input_channel, | |
| num_layers=block_params["num_layers"], | |
| resnet_eps=1e-6, | |
| resnet_groups=norm_num_groups, | |
| norm_layer=norm_layer, | |
| spatial_padding_mode=spatial_padding_mode, | |
| ) | |
| elif block_name == "res_x_y": | |
| output_channel = block_params.get("multiplier", 2) * output_channel | |
| block = ResnetBlock3D( | |
| dims=dims, | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| eps=1e-6, | |
| groups=norm_num_groups, | |
| norm_layer=norm_layer, | |
| spatial_padding_mode=spatial_padding_mode, | |
| ) | |
| elif block_name == "compress_time": | |
| block = make_conv_nd( | |
| dims=dims, | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| kernel_size=3, | |
| stride=(2, 1, 1), | |
| causal=True, | |
| spatial_padding_mode=spatial_padding_mode, | |
| ) | |
| elif block_name == "compress_space": | |
| block = make_conv_nd( | |
| dims=dims, | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| kernel_size=3, | |
| stride=(1, 2, 2), | |
| causal=True, | |
| spatial_padding_mode=spatial_padding_mode, | |
| ) | |
| elif block_name == "compress_all": | |
| block = make_conv_nd( | |
| dims=dims, | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| kernel_size=3, | |
| stride=(2, 2, 2), | |
| causal=True, | |
| spatial_padding_mode=spatial_padding_mode, | |
| ) | |
| elif block_name == "compress_all_x_y": | |
| output_channel = block_params.get("multiplier", 2) * output_channel | |
| block = make_conv_nd( | |
| dims=dims, | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| kernel_size=3, | |
| stride=(2, 2, 2), | |
| causal=True, | |
| spatial_padding_mode=spatial_padding_mode, | |
| ) | |
| elif block_name == "compress_all_res": | |
| output_channel = block_params.get("multiplier", 2) * output_channel | |
| block = SpaceToDepthDownsample( | |
| dims=dims, | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| stride=(2, 2, 2), | |
| spatial_padding_mode=spatial_padding_mode, | |
| ) | |
| elif block_name == "compress_space_res": | |
| output_channel = block_params.get("multiplier", 2) * output_channel | |
| block = SpaceToDepthDownsample( | |
| dims=dims, | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| stride=(1, 2, 2), | |
| spatial_padding_mode=spatial_padding_mode, | |
| ) | |
| elif block_name == "compress_time_res": | |
| output_channel = block_params.get("multiplier", 2) * output_channel | |
| block = SpaceToDepthDownsample( | |
| dims=dims, | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| stride=(2, 1, 1), | |
| spatial_padding_mode=spatial_padding_mode, | |
| ) | |
| else: | |
| raise ValueError(f"unknown block: {block_name}") | |
| self.down_blocks.append(block) | |
| # out | |
| if norm_layer == "group_norm": | |
| self.conv_norm_out = nn.GroupNorm( | |
| num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6 | |
| ) | |
| elif norm_layer == "pixel_norm": | |
| self.conv_norm_out = PixelNorm() | |
| elif norm_layer == "layer_norm": | |
| self.conv_norm_out = LayerNorm(output_channel, eps=1e-6) | |
| self.conv_act = nn.SiLU() | |
| conv_out_channels = out_channels | |
| if latent_log_var == "per_channel": | |
| conv_out_channels *= 2 | |
| elif latent_log_var == "uniform": | |
| conv_out_channels += 1 | |
| elif latent_log_var == "constant": | |
| conv_out_channels += 1 | |
| elif latent_log_var != "none": | |
| raise ValueError(f"Invalid latent_log_var: {latent_log_var}") | |
| self.conv_out = make_conv_nd( | |
| dims, | |
| output_channel, | |
| conv_out_channels, | |
| 3, | |
| padding=1, | |
| causal=True, | |
| spatial_padding_mode=spatial_padding_mode, | |
| ) | |
| self.gradient_checkpointing = False | |
| def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor: | |
| r"""The forward method of the `Encoder` class.""" | |
| sample = patchify(sample, patch_size_hw=self.patch_size, patch_size_t=1) | |
| sample = self.conv_in(sample) | |
| checkpoint_fn = ( | |
| partial(torch.utils.checkpoint.checkpoint, use_reentrant=False) | |
| if self.gradient_checkpointing and self.training | |
| else lambda x: x | |
| ) | |
| for down_block in self.down_blocks: | |
| sample = checkpoint_fn(down_block)(sample) | |
| sample = self.conv_norm_out(sample) | |
| sample = self.conv_act(sample) | |
| sample = self.conv_out(sample) | |
| if self.latent_log_var == "uniform": | |
| last_channel = sample[:, -1:, ...] | |
| num_dims = sample.dim() | |
| if num_dims == 4: | |
| # For shape (B, C, H, W) | |
| repeated_last_channel = last_channel.repeat( | |
| 1, sample.shape[1] - 2, 1, 1 | |
| ) | |
| sample = torch.cat([sample, repeated_last_channel], dim=1) | |
| elif num_dims == 5: | |
| # For shape (B, C, F, H, W) | |
| repeated_last_channel = last_channel.repeat( | |
| 1, sample.shape[1] - 2, 1, 1, 1 | |
| ) | |
| sample = torch.cat([sample, repeated_last_channel], dim=1) | |
| else: | |
| raise ValueError(f"Invalid input shape: {sample.shape}") | |
| elif self.latent_log_var == "constant": | |
| sample = sample[:, :-1, ...] | |
| approx_ln_0 = ( | |
| -30 | |
| ) # this is the minimal clamp value in DiagonalGaussianDistribution objects | |
| sample = torch.cat( | |
| [sample, torch.ones_like(sample, device=sample.device) * approx_ln_0], | |
| dim=1, | |
| ) | |
| return sample | |
| class Decoder(nn.Module): | |
| r""" | |
| The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample. | |
| Args: | |
| dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3): | |
| The number of dimensions to use in convolutions. | |
| in_channels (`int`, *optional*, defaults to 3): | |
| The number of input channels. | |
| out_channels (`int`, *optional*, defaults to 3): | |
| The number of output channels. | |
| blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`): | |
| The blocks to use. Each block is a tuple of the block name and the number of layers. | |
| base_channels (`int`, *optional*, defaults to 128): | |
| The number of output channels for the first convolutional layer. | |
| norm_num_groups (`int`, *optional*, defaults to 32): | |
| The number of groups for normalization. | |
| patch_size (`int`, *optional*, defaults to 1): | |
| The patch size to use. Should be a power of 2. | |
| norm_layer (`str`, *optional*, defaults to `group_norm`): | |
| The normalization layer to use. Can be either `group_norm` or `pixel_norm`. | |
| causal (`bool`, *optional*, defaults to `True`): | |
| Whether to use causal convolutions or not. | |
| """ | |
| def __init__( | |
| self, | |
| dims, | |
| in_channels: int = 3, | |
| out_channels: int = 3, | |
| blocks: List[Tuple[str, int | dict]] = [("res_x", 1)], | |
| base_channels: int = 128, | |
| layers_per_block: int = 2, | |
| norm_num_groups: int = 32, | |
| patch_size: int = 1, | |
| norm_layer: str = "group_norm", | |
| causal: bool = True, | |
| timestep_conditioning: bool = False, | |
| spatial_padding_mode: str = "zeros", | |
| ): | |
| super().__init__() | |
| self.patch_size = patch_size | |
| self.layers_per_block = layers_per_block | |
| out_channels = out_channels * patch_size**2 | |
| self.causal = causal | |
| self.blocks_desc = blocks | |
| # Compute output channel to be product of all channel-multiplier blocks | |
| output_channel = base_channels | |
| for block_name, block_params in list(reversed(blocks)): | |
| block_params = block_params if isinstance(block_params, dict) else {} | |
| if block_name == "res_x_y": | |
| output_channel = output_channel * block_params.get("multiplier", 2) | |
| if block_name == "compress_all": | |
| output_channel = output_channel * block_params.get("multiplier", 1) | |
| self.conv_in = make_conv_nd( | |
| dims, | |
| in_channels, | |
| output_channel, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| causal=True, | |
| spatial_padding_mode=spatial_padding_mode, | |
| ) | |
| self.up_blocks = nn.ModuleList([]) | |
| for block_name, block_params in list(reversed(blocks)): | |
| input_channel = output_channel | |
| if isinstance(block_params, int): | |
| block_params = {"num_layers": block_params} | |
| if block_name == "res_x": | |
| block = UNetMidBlock3D( | |
| dims=dims, | |
| in_channels=input_channel, | |
| num_layers=block_params["num_layers"], | |
| resnet_eps=1e-6, | |
| resnet_groups=norm_num_groups, | |
| norm_layer=norm_layer, | |
| inject_noise=block_params.get("inject_noise", False), | |
| timestep_conditioning=timestep_conditioning, | |
| spatial_padding_mode=spatial_padding_mode, | |
| ) | |
| elif block_name == "attn_res_x": | |
| block = UNetMidBlock3D( | |
| dims=dims, | |
| in_channels=input_channel, | |
| num_layers=block_params["num_layers"], | |
| resnet_groups=norm_num_groups, | |
| norm_layer=norm_layer, | |
| inject_noise=block_params.get("inject_noise", False), | |
| timestep_conditioning=timestep_conditioning, | |
| attention_head_dim=block_params["attention_head_dim"], | |
| spatial_padding_mode=spatial_padding_mode, | |
| ) | |
| elif block_name == "res_x_y": | |
| output_channel = output_channel // block_params.get("multiplier", 2) | |
| block = ResnetBlock3D( | |
| dims=dims, | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| eps=1e-6, | |
| groups=norm_num_groups, | |
| norm_layer=norm_layer, | |
| inject_noise=block_params.get("inject_noise", False), | |
| timestep_conditioning=False, | |
| spatial_padding_mode=spatial_padding_mode, | |
| ) | |
| elif block_name == "compress_time": | |
| block = DepthToSpaceUpsample( | |
| dims=dims, | |
| in_channels=input_channel, | |
| stride=(2, 1, 1), | |
| spatial_padding_mode=spatial_padding_mode, | |
| ) | |
| elif block_name == "compress_space": | |
| block = DepthToSpaceUpsample( | |
| dims=dims, | |
| in_channels=input_channel, | |
| stride=(1, 2, 2), | |
| spatial_padding_mode=spatial_padding_mode, | |
| ) | |
| elif block_name == "compress_all": | |
| output_channel = output_channel // block_params.get("multiplier", 1) | |
| block = DepthToSpaceUpsample( | |
| dims=dims, | |
| in_channels=input_channel, | |
| stride=(2, 2, 2), | |
| residual=block_params.get("residual", False), | |
| out_channels_reduction_factor=block_params.get("multiplier", 1), | |
| spatial_padding_mode=spatial_padding_mode, | |
| ) | |
| else: | |
| raise ValueError(f"unknown layer: {block_name}") | |
| self.up_blocks.append(block) | |
| if norm_layer == "group_norm": | |
| self.conv_norm_out = nn.GroupNorm( | |
| num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6 | |
| ) | |
| elif norm_layer == "pixel_norm": | |
| self.conv_norm_out = PixelNorm() | |
| elif norm_layer == "layer_norm": | |
| self.conv_norm_out = LayerNorm(output_channel, eps=1e-6) | |
| self.conv_act = nn.SiLU() | |
| self.conv_out = make_conv_nd( | |
| dims, | |
| output_channel, | |
| out_channels, | |
| 3, | |
| padding=1, | |
| causal=True, | |
| spatial_padding_mode=spatial_padding_mode, | |
| ) | |
| self.gradient_checkpointing = False | |
| self.timestep_conditioning = timestep_conditioning | |
| if timestep_conditioning: | |
| self.timestep_scale_multiplier = nn.Parameter( | |
| torch.tensor(1000.0, dtype=torch.float32) | |
| ) | |
| self.last_time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings( | |
| output_channel * 2, 0 | |
| ) | |
| self.last_scale_shift_table = nn.Parameter( | |
| torch.randn(2, output_channel) / output_channel**0.5 | |
| ) | |
| def forward( | |
| self, | |
| sample: torch.FloatTensor, | |
| target_shape, | |
| timestep: Optional[torch.Tensor] = None, | |
| ) -> torch.FloatTensor: | |
| r"""The forward method of the `Decoder` class.""" | |
| assert target_shape is not None, "target_shape must be provided" | |
| batch_size = sample.shape[0] | |
| sample = self.conv_in(sample, causal=self.causal) | |
| upscale_dtype = next(iter(self.up_blocks.parameters())).dtype | |
| checkpoint_fn = ( | |
| partial(torch.utils.checkpoint.checkpoint, use_reentrant=False) | |
| if self.gradient_checkpointing and self.training | |
| else lambda x: x | |
| ) | |
| sample = sample.to(upscale_dtype) | |
| if self.timestep_conditioning: | |
| assert ( | |
| timestep is not None | |
| ), "should pass timestep with timestep_conditioning=True" | |
| scaled_timestep = timestep * self.timestep_scale_multiplier | |
| for up_block in self.up_blocks: | |
| if self.timestep_conditioning and isinstance(up_block, UNetMidBlock3D): | |
| sample = checkpoint_fn(up_block)( | |
| sample, causal=self.causal, timestep=scaled_timestep | |
| ) | |
| else: | |
| sample = checkpoint_fn(up_block)(sample, causal=self.causal) | |
| sample = self.conv_norm_out(sample) | |
| if self.timestep_conditioning: | |
| embedded_timestep = self.last_time_embedder( | |
| timestep=scaled_timestep.flatten(), | |
| resolution=None, | |
| aspect_ratio=None, | |
| batch_size=sample.shape[0], | |
| hidden_dtype=sample.dtype, | |
| ) | |
| embedded_timestep = embedded_timestep.view( | |
| batch_size, embedded_timestep.shape[-1], 1, 1, 1 | |
| ) | |
| ada_values = self.last_scale_shift_table[ | |
| None, ..., None, None, None | |
| ] + embedded_timestep.reshape( | |
| batch_size, | |
| 2, | |
| -1, | |
| embedded_timestep.shape[-3], | |
| embedded_timestep.shape[-2], | |
| embedded_timestep.shape[-1], | |
| ) | |
| shift, scale = ada_values.unbind(dim=1) | |
| sample = sample * (1 + scale) + shift | |
| sample = self.conv_act(sample) | |
| sample = self.conv_out(sample, causal=self.causal) | |
| sample = unpatchify(sample, patch_size_hw=self.patch_size, patch_size_t=1) | |
| return sample | |
| class UNetMidBlock3D(nn.Module): | |
| """ | |
| A 3D UNet mid-block [`UNetMidBlock3D`] with multiple residual blocks. | |
| Args: | |
| in_channels (`int`): The number of input channels. | |
| dropout (`float`, *optional*, defaults to 0.0): The dropout rate. | |
| num_layers (`int`, *optional*, defaults to 1): The number of residual blocks. | |
| resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks. | |
| resnet_groups (`int`, *optional*, defaults to 32): | |
| The number of groups to use in the group normalization layers of the resnet blocks. | |
| norm_layer (`str`, *optional*, defaults to `group_norm`): | |
| The normalization layer to use. Can be either `group_norm` or `pixel_norm`. | |
| inject_noise (`bool`, *optional*, defaults to `False`): | |
| Whether to inject noise into the hidden states. | |
| timestep_conditioning (`bool`, *optional*, defaults to `False`): | |
| Whether to condition the hidden states on the timestep. | |
| attention_head_dim (`int`, *optional*, defaults to -1): | |
| The dimension of the attention head. If -1, no attention is used. | |
| Returns: | |
| `torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size, | |
| in_channels, height, width)`. | |
| """ | |
| def __init__( | |
| self, | |
| dims: Union[int, Tuple[int, int]], | |
| in_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_groups: int = 32, | |
| norm_layer: str = "group_norm", | |
| inject_noise: bool = False, | |
| timestep_conditioning: bool = False, | |
| attention_head_dim: int = -1, | |
| spatial_padding_mode: str = "zeros", | |
| ): | |
| super().__init__() | |
| resnet_groups = ( | |
| resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | |
| ) | |
| self.timestep_conditioning = timestep_conditioning | |
| if timestep_conditioning: | |
| self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings( | |
| in_channels * 4, 0 | |
| ) | |
| self.res_blocks = nn.ModuleList( | |
| [ | |
| ResnetBlock3D( | |
| dims=dims, | |
| in_channels=in_channels, | |
| out_channels=in_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| norm_layer=norm_layer, | |
| inject_noise=inject_noise, | |
| timestep_conditioning=timestep_conditioning, | |
| spatial_padding_mode=spatial_padding_mode, | |
| ) | |
| for _ in range(num_layers) | |
| ] | |
| ) | |
| self.attention_blocks = None | |
| if attention_head_dim > 0: | |
| if attention_head_dim > in_channels: | |
| raise ValueError( | |
| "attention_head_dim must be less than or equal to in_channels" | |
| ) | |
| self.attention_blocks = nn.ModuleList( | |
| [ | |
| Attention( | |
| query_dim=in_channels, | |
| heads=in_channels // attention_head_dim, | |
| dim_head=attention_head_dim, | |
| bias=True, | |
| out_bias=True, | |
| qk_norm="rms_norm", | |
| residual_connection=True, | |
| ) | |
| for _ in range(num_layers) | |
| ] | |
| ) | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| causal: bool = True, | |
| timestep: Optional[torch.Tensor] = None, | |
| ) -> torch.FloatTensor: | |
| timestep_embed = None | |
| if self.timestep_conditioning: | |
| assert ( | |
| timestep is not None | |
| ), "should pass timestep with timestep_conditioning=True" | |
| batch_size = hidden_states.shape[0] | |
| timestep_embed = self.time_embedder( | |
| timestep=timestep.flatten(), | |
| resolution=None, | |
| aspect_ratio=None, | |
| batch_size=batch_size, | |
| hidden_dtype=hidden_states.dtype, | |
| ) | |
| timestep_embed = timestep_embed.view( | |
| batch_size, timestep_embed.shape[-1], 1, 1, 1 | |
| ) | |
| if self.attention_blocks: | |
| for resnet, attention in zip(self.res_blocks, self.attention_blocks): | |
| hidden_states = resnet( | |
| hidden_states, causal=causal, timestep=timestep_embed | |
| ) | |
| # Reshape the hidden states to be (batch_size, frames * height * width, channel) | |
| batch_size, channel, frames, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view( | |
| batch_size, channel, frames * height * width | |
| ).transpose(1, 2) | |
| if attention.use_tpu_flash_attention: | |
| # Pad the second dimension to be divisible by block_k_major (block in flash attention) | |
| seq_len = hidden_states.shape[1] | |
| block_k_major = 512 | |
| pad_len = (block_k_major - seq_len % block_k_major) % block_k_major | |
| if pad_len > 0: | |
| hidden_states = F.pad( | |
| hidden_states, (0, 0, 0, pad_len), "constant", 0 | |
| ) | |
| # Create a mask with ones for the original sequence length and zeros for the padded indexes | |
| mask = torch.ones( | |
| (hidden_states.shape[0], seq_len), | |
| device=hidden_states.device, | |
| dtype=hidden_states.dtype, | |
| ) | |
| if pad_len > 0: | |
| mask = F.pad(mask, (0, pad_len), "constant", 0) | |
| hidden_states = attention( | |
| hidden_states, | |
| attention_mask=( | |
| None if not attention.use_tpu_flash_attention else mask | |
| ), | |
| ) | |
| if attention.use_tpu_flash_attention: | |
| # Remove the padding | |
| if pad_len > 0: | |
| hidden_states = hidden_states[:, :-pad_len, :] | |
| # Reshape the hidden states back to (batch_size, channel, frames, height, width, channel) | |
| hidden_states = hidden_states.transpose(-1, -2).reshape( | |
| batch_size, channel, frames, height, width | |
| ) | |
| else: | |
| for resnet in self.res_blocks: | |
| hidden_states = resnet( | |
| hidden_states, causal=causal, timestep=timestep_embed | |
| ) | |
| return hidden_states | |
| class SpaceToDepthDownsample(nn.Module): | |
| def __init__(self, dims, in_channels, out_channels, stride, spatial_padding_mode): | |
| super().__init__() | |
| self.stride = stride | |
| self.group_size = in_channels * np.prod(stride) // out_channels | |
| self.conv = make_conv_nd( | |
| dims=dims, | |
| in_channels=in_channels, | |
| out_channels=out_channels // np.prod(stride), | |
| kernel_size=3, | |
| stride=1, | |
| causal=True, | |
| spatial_padding_mode=spatial_padding_mode, | |
| ) | |
| def forward(self, x, causal: bool = True): | |
| if self.stride[0] == 2: | |
| x = torch.cat( | |
| [x[:, :, :1, :, :], x], dim=2 | |
| ) # duplicate first frames for padding | |
| # skip connection | |
| x_in = rearrange( | |
| x, | |
| "b c (d p1) (h p2) (w p3) -> b (c p1 p2 p3) d h w", | |
| p1=self.stride[0], | |
| p2=self.stride[1], | |
| p3=self.stride[2], | |
| ) | |
| x_in = rearrange(x_in, "b (c g) d h w -> b c g d h w", g=self.group_size) | |
| x_in = x_in.mean(dim=2) | |
| # conv | |
| x = self.conv(x, causal=causal) | |
| x = rearrange( | |
| x, | |
| "b c (d p1) (h p2) (w p3) -> b (c p1 p2 p3) d h w", | |
| p1=self.stride[0], | |
| p2=self.stride[1], | |
| p3=self.stride[2], | |
| ) | |
| x = x + x_in | |
| return x | |
| class DepthToSpaceUpsample(nn.Module): | |
| def __init__( | |
| self, | |
| dims, | |
| in_channels, | |
| stride, | |
| residual=False, | |
| out_channels_reduction_factor=1, | |
| spatial_padding_mode="zeros", | |
| ): | |
| super().__init__() | |
| self.stride = stride | |
| self.out_channels = ( | |
| np.prod(stride) * in_channels // out_channels_reduction_factor | |
| ) | |
| self.conv = make_conv_nd( | |
| dims=dims, | |
| in_channels=in_channels, | |
| out_channels=self.out_channels, | |
| kernel_size=3, | |
| stride=1, | |
| causal=True, | |
| spatial_padding_mode=spatial_padding_mode, | |
| ) | |
| self.pixel_shuffle = PixelShuffleND(dims=dims, upscale_factors=stride) | |
| self.residual = residual | |
| self.out_channels_reduction_factor = out_channels_reduction_factor | |
| def forward(self, x, causal: bool = True): | |
| if self.residual: | |
| # Reshape and duplicate the input to match the output shape | |
| x_in = self.pixel_shuffle(x) | |
| num_repeat = np.prod(self.stride) // self.out_channels_reduction_factor | |
| x_in = x_in.repeat(1, num_repeat, 1, 1, 1) | |
| if self.stride[0] == 2: | |
| x_in = x_in[:, :, 1:, :, :] | |
| x = self.conv(x, causal=causal) | |
| x = self.pixel_shuffle(x) | |
| if self.stride[0] == 2: | |
| x = x[:, :, 1:, :, :] | |
| if self.residual: | |
| x = x + x_in | |
| return x | |
| class LayerNorm(nn.Module): | |
| def __init__(self, dim, eps, elementwise_affine=True) -> None: | |
| super().__init__() | |
| self.norm = nn.LayerNorm(dim, eps=eps, elementwise_affine=elementwise_affine) | |
| def forward(self, x): | |
| x = rearrange(x, "b c d h w -> b d h w c") | |
| x = self.norm(x) | |
| x = rearrange(x, "b d h w c -> b c d h w") | |
| return x | |
| class ResnetBlock3D(nn.Module): | |
| r""" | |
| A Resnet block. | |
| Parameters: | |
| in_channels (`int`): The number of channels in the input. | |
| out_channels (`int`, *optional*, default to be `None`): | |
| The number of output channels for the first conv layer. If None, same as `in_channels`. | |
| dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use. | |
| groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer. | |
| eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization. | |
| """ | |
| def __init__( | |
| self, | |
| dims: Union[int, Tuple[int, int]], | |
| in_channels: int, | |
| out_channels: Optional[int] = None, | |
| dropout: float = 0.0, | |
| groups: int = 32, | |
| eps: float = 1e-6, | |
| norm_layer: str = "group_norm", | |
| inject_noise: bool = False, | |
| timestep_conditioning: bool = False, | |
| spatial_padding_mode: str = "zeros", | |
| ): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| out_channels = in_channels if out_channels is None else out_channels | |
| self.out_channels = out_channels | |
| self.inject_noise = inject_noise | |
| if norm_layer == "group_norm": | |
| self.norm1 = nn.GroupNorm( | |
| num_groups=groups, num_channels=in_channels, eps=eps, affine=True | |
| ) | |
| elif norm_layer == "pixel_norm": | |
| self.norm1 = PixelNorm() | |
| elif norm_layer == "layer_norm": | |
| self.norm1 = LayerNorm(in_channels, eps=eps, elementwise_affine=True) | |
| self.non_linearity = nn.SiLU() | |
| self.conv1 = make_conv_nd( | |
| dims, | |
| in_channels, | |
| out_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| causal=True, | |
| spatial_padding_mode=spatial_padding_mode, | |
| ) | |
| if inject_noise: | |
| self.per_channel_scale1 = nn.Parameter(torch.zeros((in_channels, 1, 1))) | |
| if norm_layer == "group_norm": | |
| self.norm2 = nn.GroupNorm( | |
| num_groups=groups, num_channels=out_channels, eps=eps, affine=True | |
| ) | |
| elif norm_layer == "pixel_norm": | |
| self.norm2 = PixelNorm() | |
| elif norm_layer == "layer_norm": | |
| self.norm2 = LayerNorm(out_channels, eps=eps, elementwise_affine=True) | |
| self.dropout = torch.nn.Dropout(dropout) | |
| self.conv2 = make_conv_nd( | |
| dims, | |
| out_channels, | |
| out_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| causal=True, | |
| spatial_padding_mode=spatial_padding_mode, | |
| ) | |
| if inject_noise: | |
| self.per_channel_scale2 = nn.Parameter(torch.zeros((in_channels, 1, 1))) | |
| self.conv_shortcut = ( | |
| make_linear_nd( | |
| dims=dims, in_channels=in_channels, out_channels=out_channels | |
| ) | |
| if in_channels != out_channels | |
| else nn.Identity() | |
| ) | |
| self.norm3 = ( | |
| LayerNorm(in_channels, eps=eps, elementwise_affine=True) | |
| if in_channels != out_channels | |
| else nn.Identity() | |
| ) | |
| self.timestep_conditioning = timestep_conditioning | |
| if timestep_conditioning: | |
| self.scale_shift_table = nn.Parameter( | |
| torch.randn(4, in_channels) / in_channels**0.5 | |
| ) | |
| def _feed_spatial_noise( | |
| self, hidden_states: torch.FloatTensor, per_channel_scale: torch.FloatTensor | |
| ) -> torch.FloatTensor: | |
| spatial_shape = hidden_states.shape[-2:] | |
| device = hidden_states.device | |
| dtype = hidden_states.dtype | |
| # similar to the "explicit noise inputs" method in style-gan | |
| spatial_noise = torch.randn(spatial_shape, device=device, dtype=dtype)[None] | |
| scaled_noise = (spatial_noise * per_channel_scale)[None, :, None, ...] | |
| hidden_states = hidden_states + scaled_noise | |
| return hidden_states | |
| def forward( | |
| self, | |
| input_tensor: torch.FloatTensor, | |
| causal: bool = True, | |
| timestep: Optional[torch.Tensor] = None, | |
| ) -> torch.FloatTensor: | |
| hidden_states = input_tensor | |
| batch_size = hidden_states.shape[0] | |
| hidden_states = self.norm1(hidden_states) | |
| if self.timestep_conditioning: | |
| assert ( | |
| timestep is not None | |
| ), "should pass timestep with timestep_conditioning=True" | |
| ada_values = self.scale_shift_table[ | |
| None, ..., None, None, None | |
| ] + timestep.reshape( | |
| batch_size, | |
| 4, | |
| -1, | |
| timestep.shape[-3], | |
| timestep.shape[-2], | |
| timestep.shape[-1], | |
| ) | |
| shift1, scale1, shift2, scale2 = ada_values.unbind(dim=1) | |
| hidden_states = hidden_states * (1 + scale1) + shift1 | |
| hidden_states = self.non_linearity(hidden_states) | |
| hidden_states = self.conv1(hidden_states, causal=causal) | |
| if self.inject_noise: | |
| hidden_states = self._feed_spatial_noise( | |
| hidden_states, self.per_channel_scale1 | |
| ) | |
| hidden_states = self.norm2(hidden_states) | |
| if self.timestep_conditioning: | |
| hidden_states = hidden_states * (1 + scale2) + shift2 | |
| hidden_states = self.non_linearity(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.conv2(hidden_states, causal=causal) | |
| if self.inject_noise: | |
| hidden_states = self._feed_spatial_noise( | |
| hidden_states, self.per_channel_scale2 | |
| ) | |
| input_tensor = self.norm3(input_tensor) | |
| batch_size = input_tensor.shape[0] | |
| input_tensor = self.conv_shortcut(input_tensor) | |
| output_tensor = input_tensor + hidden_states | |
| return output_tensor | |
| def patchify(x, patch_size_hw, patch_size_t=1): | |
| if patch_size_hw == 1 and patch_size_t == 1: | |
| return x | |
| if x.dim() == 4: | |
| x = rearrange( | |
| x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size_hw, r=patch_size_hw | |
| ) | |
| elif x.dim() == 5: | |
| x = rearrange( | |
| x, | |
| "b c (f p) (h q) (w r) -> b (c p r q) f h w", | |
| p=patch_size_t, | |
| q=patch_size_hw, | |
| r=patch_size_hw, | |
| ) | |
| else: | |
| raise ValueError(f"Invalid input shape: {x.shape}") | |
| return x | |
| def unpatchify(x, patch_size_hw, patch_size_t=1): | |
| if patch_size_hw == 1 and patch_size_t == 1: | |
| return x | |
| if x.dim() == 4: | |
| x = rearrange( | |
| x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size_hw, r=patch_size_hw | |
| ) | |
| elif x.dim() == 5: | |
| x = rearrange( | |
| x, | |
| "b (c p r q) f h w -> b c (f p) (h q) (w r)", | |
| p=patch_size_t, | |
| q=patch_size_hw, | |
| r=patch_size_hw, | |
| ) | |
| return x | |
| def create_video_autoencoder_demo_config( | |
| latent_channels: int = 64, | |
| ): | |
| encoder_blocks = [ | |
| ("res_x", {"num_layers": 2}), | |
| ("compress_space_res", {"multiplier": 2}), | |
| ("res_x", {"num_layers": 2}), | |
| ("compress_time_res", {"multiplier": 2}), | |
| ("res_x", {"num_layers": 1}), | |
| ("compress_all_res", {"multiplier": 2}), | |
| ("res_x", {"num_layers": 1}), | |
| ("compress_all_res", {"multiplier": 2}), | |
| ("res_x", {"num_layers": 1}), | |
| ] | |
| decoder_blocks = [ | |
| ("res_x", {"num_layers": 2, "inject_noise": False}), | |
| ("compress_all", {"residual": True, "multiplier": 2}), | |
| ("res_x", {"num_layers": 2, "inject_noise": False}), | |
| ("compress_all", {"residual": True, "multiplier": 2}), | |
| ("res_x", {"num_layers": 2, "inject_noise": False}), | |
| ("compress_all", {"residual": True, "multiplier": 2}), | |
| ("res_x", {"num_layers": 2, "inject_noise": False}), | |
| ] | |
| return { | |
| "_class_name": "CausalVideoAutoencoder", | |
| "dims": 3, | |
| "encoder_blocks": encoder_blocks, | |
| "decoder_blocks": decoder_blocks, | |
| "latent_channels": latent_channels, | |
| "norm_layer": "pixel_norm", | |
| "patch_size": 4, | |
| "latent_log_var": "uniform", | |
| "use_quant_conv": False, | |
| "causal_decoder": False, | |
| "timestep_conditioning": True, | |
| "spatial_padding_mode": "replicate", | |
| } | |
| def test_vae_patchify_unpatchify(): | |
| import torch | |
| x = torch.randn(2, 3, 8, 64, 64) | |
| x_patched = patchify(x, patch_size_hw=4, patch_size_t=4) | |
| x_unpatched = unpatchify(x_patched, patch_size_hw=4, patch_size_t=4) | |
| assert torch.allclose(x, x_unpatched) | |
| def demo_video_autoencoder_forward_backward(): | |
| # Configuration for the VideoAutoencoder | |
| config = create_video_autoencoder_demo_config() | |
| # Instantiate the VideoAutoencoder with the specified configuration | |
| video_autoencoder = CausalVideoAutoencoder.from_config(config) | |
| print(video_autoencoder) | |
| video_autoencoder.eval() | |
| # Print the total number of parameters in the video autoencoder | |
| total_params = sum(p.numel() for p in video_autoencoder.parameters()) | |
| print(f"Total number of parameters in VideoAutoencoder: {total_params:,}") | |
| # Create a mock input tensor simulating a batch of videos | |
| # Shape: (batch_size, channels, depth, height, width) | |
| # E.g., 4 videos, each with 3 color channels, 16 frames, and 64x64 pixels per frame | |
| input_videos = torch.randn(2, 3, 17, 64, 64) | |
| # Forward pass: encode and decode the input videos | |
| latent = video_autoencoder.encode(input_videos).latent_dist.mode() | |
| print(f"input shape={input_videos.shape}") | |
| print(f"latent shape={latent.shape}") | |
| timestep = torch.ones(input_videos.shape[0]) * 0.1 | |
| reconstructed_videos = video_autoencoder.decode( | |
| latent, target_shape=input_videos.shape, timestep=timestep | |
| ).sample | |
| print(f"reconstructed shape={reconstructed_videos.shape}") | |
| # Validate that single image gets treated the same way as first frame | |
| input_image = input_videos[:, :, :1, :, :] | |
| image_latent = video_autoencoder.encode(input_image).latent_dist.mode() | |
| _ = video_autoencoder.decode( | |
| image_latent, target_shape=image_latent.shape, timestep=timestep | |
| ).sample | |
| first_frame_latent = latent[:, :, :1, :, :] | |
| assert torch.allclose(image_latent, first_frame_latent, atol=1e-6) | |
| # assert torch.allclose(reconstructed_image, reconstructed_videos[:, :, :1, :, :], atol=1e-6) | |
| # assert torch.allclose(image_latent, first_frame_latent, atol=1e-6) | |
| # assert (reconstructed_image == reconstructed_videos[:, :, :1, :, :]).all() | |
| # Calculate the loss (e.g., mean squared error) | |
| loss = torch.nn.functional.mse_loss(input_videos, reconstructed_videos) | |
| # Perform backward pass | |
| loss.backward() | |
| print(f"Demo completed with loss: {loss.item()}") | |
| # Ensure to call the demo function to execute the forward and backward pass | |
| if __name__ == "__main__": | |
| demo_video_autoencoder_forward_backward() | |