Spaces:
Running
Running
| from typing import Optional, Union | |
| import torch | |
| import inspect | |
| import math | |
| import torch.nn as nn | |
| from diffusers import ConfigMixin, ModelMixin | |
| from diffusers.models.autoencoders.vae import ( | |
| DecoderOutput, | |
| DiagonalGaussianDistribution, | |
| ) | |
| from diffusers.models.modeling_outputs import AutoencoderKLOutput | |
| from ltx_video.models.autoencoders.conv_nd_factory import make_conv_nd | |
| class AutoencoderKLWrapper(ModelMixin, ConfigMixin): | |
| """Variational Autoencoder (VAE) model with KL loss. | |
| VAE from the paper Auto-Encoding Variational Bayes by Diederik P. Kingma and Max Welling. | |
| This model is a wrapper around an encoder and a decoder, and it adds a KL loss term to the reconstruction loss. | |
| Args: | |
| encoder (`nn.Module`): | |
| Encoder module. | |
| decoder (`nn.Module`): | |
| Decoder module. | |
| latent_channels (`int`, *optional*, defaults to 4): | |
| Number of latent channels. | |
| """ | |
| def __init__( | |
| self, | |
| encoder: nn.Module, | |
| decoder: nn.Module, | |
| latent_channels: int = 4, | |
| dims: int = 2, | |
| sample_size=512, | |
| use_quant_conv: bool = True, | |
| normalize_latent_channels: bool = False, | |
| ): | |
| super().__init__() | |
| self.per_channel_statistics = nn.Module() | |
| std_of_means = torch.zeros( (128,), dtype= torch.bfloat16) | |
| self.per_channel_statistics.register_buffer("std-of-means", std_of_means) | |
| self.per_channel_statistics.register_buffer( | |
| "mean-of-means", | |
| torch.zeros_like(std_of_means) | |
| ) | |
| # pass init params to Encoder | |
| self.encoder = encoder | |
| self.use_quant_conv = use_quant_conv | |
| self.normalize_latent_channels = normalize_latent_channels | |
| # pass init params to Decoder | |
| quant_dims = 2 if dims == 2 else 3 | |
| self.decoder = decoder | |
| if use_quant_conv: | |
| self.quant_conv = make_conv_nd( | |
| quant_dims, 2 * latent_channels, 2 * latent_channels, 1 | |
| ) | |
| self.post_quant_conv = make_conv_nd( | |
| quant_dims, latent_channels, latent_channels, 1 | |
| ) | |
| else: | |
| self.quant_conv = nn.Identity() | |
| self.post_quant_conv = nn.Identity() | |
| if normalize_latent_channels: | |
| if dims == 2: | |
| self.latent_norm_out = nn.BatchNorm2d(latent_channels, affine=False) | |
| else: | |
| self.latent_norm_out = nn.BatchNorm3d(latent_channels, affine=False) | |
| else: | |
| self.latent_norm_out = nn.Identity() | |
| self.use_z_tiling = False | |
| self.use_hw_tiling = False | |
| self.dims = dims | |
| self.z_sample_size = 1 | |
| self.decoder_params = inspect.signature(self.decoder.forward).parameters | |
| # only relevant if vae tiling is enabled | |
| self.set_tiling_params(sample_size=sample_size, overlap_factor=0.25) | |
| def get_VAE_tile_size(vae_config, device_mem_capacity, mixed_precision): | |
| z_tile = 4 | |
| # VAE Tiling | |
| if vae_config == 0: | |
| if mixed_precision: | |
| device_mem_capacity = device_mem_capacity / 1.5 | |
| if device_mem_capacity >= 24000: | |
| use_vae_config = 1 | |
| elif device_mem_capacity >= 8000: | |
| use_vae_config = 2 | |
| else: | |
| use_vae_config = 3 | |
| else: | |
| use_vae_config = vae_config | |
| if use_vae_config == 1: | |
| hw_tile = 0 | |
| elif use_vae_config == 2: | |
| hw_tile = 512 | |
| else: | |
| hw_tile = 256 | |
| return (z_tile, hw_tile) | |
| def set_tiling_params(self, sample_size: int = 512, overlap_factor: float = 0.25): | |
| self.tile_sample_min_size = sample_size | |
| num_blocks = len(self.encoder.down_blocks) | |
| # self.tile_latent_min_size = int(sample_size / (2 ** (num_blocks - 1))) | |
| self.tile_latent_min_size = int(sample_size / 32) | |
| self.tile_overlap_factor = overlap_factor | |
| def enable_z_tiling(self, z_sample_size: int = 4): | |
| r""" | |
| Enable tiling during VAE decoding. | |
| When this option is enabled, the VAE will split the input tensor in tiles to compute decoding in several | |
| steps. This is useful to save some memory and allow larger batch sizes. | |
| """ | |
| self.use_z_tiling = z_sample_size > 1 | |
| self.z_sample_size = z_sample_size | |
| assert ( | |
| z_sample_size % 4 == 0 or z_sample_size == 1 | |
| ), f"z_sample_size must be a multiple of 4 or 1. Got {z_sample_size}." | |
| def disable_z_tiling(self): | |
| r""" | |
| Disable tiling during VAE decoding. If `use_tiling` was previously invoked, this method will go back to computing | |
| decoding in one step. | |
| """ | |
| self.use_z_tiling = False | |
| def enable_hw_tiling(self): | |
| r""" | |
| Enable tiling during VAE decoding along the height and width dimension. | |
| """ | |
| self.use_hw_tiling = True | |
| def disable_hw_tiling(self): | |
| r""" | |
| Disable tiling during VAE decoding along the height and width dimension. | |
| """ | |
| self.use_hw_tiling = False | |
| def _hw_tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True): | |
| overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) | |
| blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor) | |
| row_limit = self.tile_latent_min_size - blend_extent | |
| # Split the image into 512x512 tiles and encode them separately. | |
| rows = [] | |
| for i in range(0, x.shape[3], overlap_size): | |
| row = [] | |
| for j in range(0, x.shape[4], overlap_size): | |
| tile = x[ | |
| :, | |
| :, | |
| :, | |
| i : i + self.tile_sample_min_size, | |
| j : j + self.tile_sample_min_size, | |
| ] | |
| tile = self.encoder(tile) | |
| tile = self.quant_conv(tile) | |
| row.append(tile) | |
| rows.append(row) | |
| result_rows = [] | |
| for i, row in enumerate(rows): | |
| result_row = [] | |
| for j, tile in enumerate(row): | |
| # blend the above tile and the left tile | |
| # to the current tile and add the current tile to the result row | |
| if i > 0: | |
| tile = self.blend_v(rows[i - 1][j], tile, blend_extent) | |
| if j > 0: | |
| tile = self.blend_h(row[j - 1], tile, blend_extent) | |
| result_row.append(tile[:, :, :, :row_limit, :row_limit]) | |
| result_rows.append(torch.cat(result_row, dim=4)) | |
| moments = torch.cat(result_rows, dim=3) | |
| return moments | |
| def blend_z( | |
| self, a: torch.Tensor, b: torch.Tensor, blend_extent: int | |
| ) -> torch.Tensor: | |
| blend_extent = min(a.shape[2], b.shape[2], blend_extent) | |
| for z in range(blend_extent): | |
| b[:, :, z, :, :] = a[:, :, -blend_extent + z, :, :] * ( | |
| 1 - z / blend_extent | |
| ) + b[:, :, z, :, :] * (z / blend_extent) | |
| return b | |
| def blend_v( | |
| self, a: torch.Tensor, b: torch.Tensor, blend_extent: int | |
| ) -> torch.Tensor: | |
| blend_extent = min(a.shape[3], b.shape[3], blend_extent) | |
| for y in range(blend_extent): | |
| b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * ( | |
| 1 - y / blend_extent | |
| ) + b[:, :, :, y, :] * (y / blend_extent) | |
| return b | |
| def blend_h( | |
| self, a: torch.Tensor, b: torch.Tensor, blend_extent: int | |
| ) -> torch.Tensor: | |
| blend_extent = min(a.shape[4], b.shape[4], blend_extent) | |
| for x in range(blend_extent): | |
| b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * ( | |
| 1 - x / blend_extent | |
| ) + b[:, :, :, :, x] * (x / blend_extent) | |
| return b | |
| def _hw_tiled_decode(self, z: torch.FloatTensor, target_shape, timestep = None): | |
| overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor)) | |
| blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor) | |
| row_limit = self.tile_sample_min_size - blend_extent | |
| tile_target_shape = ( | |
| *target_shape[:3], | |
| self.tile_sample_min_size, | |
| self.tile_sample_min_size, | |
| ) | |
| # Split z into overlapping 64x64 tiles and decode them separately. | |
| # The tiles have an overlap to avoid seams between tiles. | |
| rows = [] | |
| for i in range(0, z.shape[3], overlap_size): | |
| row = [] | |
| for j in range(0, z.shape[4], overlap_size): | |
| tile = z[ | |
| :, | |
| :, | |
| :, | |
| i : i + self.tile_latent_min_size, | |
| j : j + self.tile_latent_min_size, | |
| ] | |
| tile = self.post_quant_conv(tile) | |
| decoded = self.decoder(tile, target_shape=tile_target_shape, timestep = timestep) | |
| row.append(decoded) | |
| rows.append(row) | |
| result_rows = [] | |
| for i, row in enumerate(rows): | |
| result_row = [] | |
| for j, tile in enumerate(row): | |
| # blend the above tile and the left tile | |
| # to the current tile and add the current tile to the result row | |
| if i > 0: | |
| tile = self.blend_v(rows[i - 1][j], tile, blend_extent) | |
| if j > 0: | |
| tile = self.blend_h(row[j - 1], tile, blend_extent) | |
| result_row.append(tile[:, :, :, :row_limit, :row_limit]) | |
| result_rows.append(torch.cat(result_row, dim=4)) | |
| dec = torch.cat(result_rows, dim=3) | |
| return dec | |
| def encode( | |
| self, z: torch.FloatTensor, return_dict: bool = True | |
| ) -> Union[DecoderOutput, torch.FloatTensor]: | |
| if self.use_z_tiling and z.shape[2] > (self.z_sample_size + 1) > 1: | |
| tile_latent_min_tsize = self.z_sample_size | |
| tile_sample_min_tsize = tile_latent_min_tsize * 8 | |
| tile_overlap_factor = 0.25 | |
| B, C, T, H, W = z.shape | |
| overlap_size = int(tile_sample_min_tsize * (1 - tile_overlap_factor)) | |
| blend_extent = int(tile_latent_min_tsize * tile_overlap_factor) | |
| t_limit = tile_latent_min_tsize - blend_extent | |
| row = [] | |
| for i in range(0, T, overlap_size): | |
| tile = z[:, :, i: i + tile_sample_min_tsize + 1, :, :] | |
| if self.use_hw_tiling: | |
| tile = self._hw_tiled_encode(tile, return_dict) | |
| else: | |
| tile = self._encode(tile) | |
| if i > 0: | |
| tile = tile[:, :, 1:, :, :] | |
| row.append(tile) | |
| result_row = [] | |
| for i, tile in enumerate(row): | |
| if i > 0: | |
| tile = self.blend_z(row[i - 1], tile, blend_extent) | |
| result_row.append(tile[:, :, :t_limit, :, :]) | |
| else: | |
| result_row.append(tile[:, :, :t_limit + 1, :, :]) | |
| moments = torch.cat(result_row, dim=2) | |
| else: | |
| moments = ( | |
| self._hw_tiled_encode(z, return_dict) | |
| if self.use_hw_tiling and z.shape[2] > 1 | |
| else self._encode(z) | |
| ) | |
| posterior = DiagonalGaussianDistribution(moments) | |
| if not return_dict: | |
| return (posterior,) | |
| return AutoencoderKLOutput(latent_dist=posterior) | |
| def _normalize_latent_channels(self, z: torch.FloatTensor) -> torch.FloatTensor: | |
| if isinstance(self.latent_norm_out, nn.BatchNorm3d): | |
| _, c, _, _, _ = z.shape | |
| z = torch.cat( | |
| [ | |
| self.latent_norm_out(z[:, : c // 2, :, :, :]), | |
| z[:, c // 2 :, :, :, :], | |
| ], | |
| dim=1, | |
| ) | |
| elif isinstance(self.latent_norm_out, nn.BatchNorm2d): | |
| raise NotImplementedError("BatchNorm2d not supported") | |
| return z | |
| def _unnormalize_latent_channels(self, z: torch.FloatTensor) -> torch.FloatTensor: | |
| if isinstance(self.latent_norm_out, nn.BatchNorm3d): | |
| running_mean = self.latent_norm_out.running_mean.view(1, -1, 1, 1, 1) | |
| running_var = self.latent_norm_out.running_var.view(1, -1, 1, 1, 1) | |
| eps = self.latent_norm_out.eps | |
| z = z * torch.sqrt(running_var + eps) + running_mean | |
| elif isinstance(self.latent_norm_out, nn.BatchNorm3d): | |
| raise NotImplementedError("BatchNorm2d not supported") | |
| return z | |
| def _encode(self, x: torch.FloatTensor) -> AutoencoderKLOutput: | |
| h = self.encoder(x) | |
| moments = self.quant_conv(h) | |
| moments = self._normalize_latent_channels(moments) | |
| return moments | |
| def _decode( | |
| self, | |
| z: torch.FloatTensor, | |
| target_shape=None, | |
| timestep: Optional[torch.Tensor] = None, | |
| ) -> Union[DecoderOutput, torch.FloatTensor]: | |
| z = self._unnormalize_latent_channels(z) | |
| z = self.post_quant_conv(z) | |
| if "timestep" in self.decoder_params: | |
| dec = self.decoder(z, target_shape=target_shape, timestep=timestep) | |
| else: | |
| dec = self.decoder(z, target_shape=target_shape) | |
| return dec | |
| def decode( | |
| self, | |
| z: torch.FloatTensor, | |
| return_dict: bool = True, | |
| target_shape=None, | |
| timestep: Optional[torch.Tensor] = None, | |
| ) -> Union[DecoderOutput, torch.FloatTensor]: | |
| assert target_shape is not None, "target_shape must be provided for decoding" | |
| if self.use_z_tiling and z.shape[2] > (self.z_sample_size + 1) > 1: | |
| # Split z into overlapping tiles and decode them separately. | |
| tile_latent_min_tsize = self.z_sample_size | |
| tile_sample_min_tsize = tile_latent_min_tsize * 8 | |
| tile_overlap_factor = 0.25 | |
| B, C, T, H, W = z.shape | |
| overlap_size = int(tile_latent_min_tsize * (1 - tile_overlap_factor)) | |
| blend_extent = int(tile_sample_min_tsize * tile_overlap_factor) | |
| t_limit = tile_sample_min_tsize - blend_extent | |
| row = [] | |
| for i in range(0, T, overlap_size): | |
| tile = z[:, :, i: i + tile_latent_min_tsize + 1, :, :] | |
| target_shape_split = list(target_shape) | |
| target_shape_split[2] = tile.shape[2] * 8 | |
| if self.use_hw_tiling: | |
| decoded = self._hw_tiled_decode(tile, target_shape, timestep) | |
| else: | |
| decoded = self._decode(tile, target_shape=target_shape, timestep=timestep) | |
| if i > 0: | |
| decoded = decoded[:, :, 1:, :, :] | |
| row.append(decoded.to(torch.float16).cpu()) | |
| decoded = None | |
| result_row = [] | |
| for i, tile in enumerate(row): | |
| if i > 0: | |
| tile = self.blend_z(row[i - 1], tile, blend_extent) | |
| result_row.append(tile[:, :, :t_limit, :, :]) | |
| else: | |
| result_row.append(tile[:, :, :t_limit + 1, :, :]) | |
| dec = torch.cat(result_row, dim=2) | |
| if not return_dict: | |
| return (dec,) | |
| return DecoderOutput(sample=dec) | |
| else: | |
| decoded = ( | |
| self._hw_tiled_decode(z, target_shape, timestep) | |
| if self.use_hw_tiling | |
| else self._decode(z, target_shape=target_shape, timestep=timestep) | |
| ) | |
| if not return_dict: | |
| return (decoded,) | |
| return DecoderOutput(sample=decoded) | |
| def forward( | |
| self, | |
| sample: torch.FloatTensor, | |
| sample_posterior: bool = False, | |
| return_dict: bool = True, | |
| generator: Optional[torch.Generator] = None, | |
| ) -> Union[DecoderOutput, torch.FloatTensor]: | |
| r""" | |
| Args: | |
| sample (`torch.FloatTensor`): Input sample. | |
| sample_posterior (`bool`, *optional*, defaults to `False`): | |
| Whether to sample from the posterior. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether to return a [`DecoderOutput`] instead of a plain tuple. | |
| generator (`torch.Generator`, *optional*): | |
| Generator used to sample from the posterior. | |
| """ | |
| x = sample | |
| posterior = self.encode(x).latent_dist | |
| if sample_posterior: | |
| z = posterior.sample(generator=generator) | |
| else: | |
| z = posterior.mode() | |
| dec = self.decode(z, target_shape=sample.shape).sample | |
| if not return_dict: | |
| return (dec,) | |
| return DecoderOutput(sample=dec) | |