Spaces:
Running
Running
| import tqdm | |
| import torch | |
| from torchvision.transforms.functional import to_tensor | |
| import numpy as np | |
| import random | |
| import cv2 | |
| def gen_dilate(alpha, min_kernel_size, max_kernel_size): | |
| kernel_size = random.randint(min_kernel_size, max_kernel_size) | |
| kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size,kernel_size)) | |
| fg_and_unknown = np.array(np.not_equal(alpha, 0).astype(np.float32)) | |
| dilate = cv2.dilate(fg_and_unknown, kernel, iterations=1)*255 | |
| return dilate.astype(np.float32) | |
| def gen_erosion(alpha, min_kernel_size, max_kernel_size): | |
| kernel_size = random.randint(min_kernel_size, max_kernel_size) | |
| kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size,kernel_size)) | |
| fg = np.array(np.equal(alpha, 255).astype(np.float32)) | |
| erode = cv2.erode(fg, kernel, iterations=1)*255 | |
| return erode.astype(np.float32) | |
| def matanyone(processor, frames_np, mask, r_erode=0, r_dilate=0, n_warmup=10): | |
| """ | |
| Args: | |
| frames_np: [(H,W,C)]*n, uint8 | |
| mask: (H,W), uint8 | |
| Outputs: | |
| com: [(H,W,C)]*n, uint8 | |
| pha: [(H,W,C)]*n, uint8 | |
| """ | |
| # print(f'===== [r_erode] {r_erode}; [r_dilate] {r_dilate} =====') | |
| bgr = (np.array([120, 255, 155], dtype=np.float32)/255).reshape((1, 1, 3)) | |
| objects = [1] | |
| # [optional] erode & dilate on given seg mask | |
| if r_dilate > 0: | |
| mask = gen_dilate(mask, r_dilate, r_dilate) | |
| if r_erode > 0: | |
| mask = gen_erosion(mask, r_erode, r_erode) | |
| mask = torch.from_numpy(mask).cuda() | |
| frames_np = [frames_np[0]]* n_warmup + frames_np | |
| frames = [] | |
| phas = [] | |
| for ti, frame_single in tqdm.tqdm(enumerate(frames_np)): | |
| image = to_tensor(frame_single).cuda().float() | |
| if ti == 0: | |
| output_prob = processor.step(image, mask, objects=objects) # encode given mask | |
| output_prob = processor.step(image, first_frame_pred=True) # clear past memory for warmup frames | |
| else: | |
| if ti <= n_warmup: | |
| output_prob = processor.step(image, first_frame_pred=True) # clear past memory for warmup frames | |
| else: | |
| output_prob = processor.step(image) | |
| # convert output probabilities to an object mask | |
| mask = processor.output_prob_to_mask(output_prob) | |
| pha = mask.unsqueeze(2).cpu().numpy() | |
| com_np = frame_single / 255. * pha + bgr * (1 - pha) | |
| # DONOT save the warmup frames | |
| if ti > (n_warmup-1): | |
| frames.append((com_np*255).astype(np.uint8)) | |
| phas.append((pha*255).astype(np.uint8)) | |
| return frames, phas |