Spaces:
Running
Running
| import time | |
| import torch | |
| import cv2 | |
| from PIL import Image, ImageDraw, ImageOps | |
| import numpy as np | |
| from typing import Union | |
| from segment_anything import sam_model_registry, SamPredictor, SamAutomaticMaskGenerator | |
| import matplotlib.pyplot as plt | |
| import PIL | |
| from .mask_painter import mask_painter | |
| class BaseSegmenter: | |
| def __init__(self, SAM_checkpoint, model_type, device='cuda:0'): | |
| """ | |
| device: model device | |
| SAM_checkpoint: path of SAM checkpoint | |
| model_type: vit_b, vit_l, vit_h | |
| """ | |
| print(f"Initializing BaseSegmenter to {device}") | |
| assert model_type in ['vit_b', 'vit_l', 'vit_h'], 'model_type must be vit_b, vit_l, or vit_h' | |
| self.device = device | |
| # SAM_checkpoint = None | |
| self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
| from accelerate import init_empty_weights | |
| # self.model = sam_model_registry[model_type](checkpoint=SAM_checkpoint) | |
| with init_empty_weights(): | |
| self.model = sam_model_registry[model_type](checkpoint=SAM_checkpoint) | |
| from mmgp import offload | |
| # self.model.to(torch.float16) | |
| # offload.save_model(self.model, "ckpts/mask/sam_vit_h_4b8939_fp16.safetensors") | |
| offload.load_model_data(self.model, "ckpts/mask/sam_vit_h_4b8939_fp16.safetensors") | |
| self.model.to(torch.float32) # need to be optimized, if not f32 crappy precision | |
| self.model.to(device=self.device) | |
| self.predictor = SamPredictor(self.model) | |
| self.embedded = False | |
| def set_image(self, image: np.ndarray): | |
| # PIL.open(image_path) 3channel: RGB | |
| # image embedding: avoid encode the same image multiple times | |
| self.orignal_image = image | |
| if self.embedded: | |
| print('repeat embedding, please reset_image.') | |
| return | |
| self.predictor.set_image(image) | |
| self.embedded = True | |
| return | |
| def reset_image(self): | |
| # reset image embeding | |
| self.predictor.reset_image() | |
| self.embedded = False | |
| def predict(self, prompts, mode, multimask=True): | |
| """ | |
| image: numpy array, h, w, 3 | |
| prompts: dictionary, 3 keys: 'point_coords', 'point_labels', 'mask_input' | |
| prompts['point_coords']: numpy array [N,2] | |
| prompts['point_labels']: numpy array [1,N] | |
| prompts['mask_input']: numpy array [1,256,256] | |
| mode: 'point' (points only), 'mask' (mask only), 'both' (consider both) | |
| mask_outputs: True (return 3 masks), False (return 1 mask only) | |
| whem mask_outputs=True, mask_input=logits[np.argmax(scores), :, :][None, :, :] | |
| """ | |
| assert self.embedded, 'prediction is called before set_image (feature embedding).' | |
| assert mode in ['point', 'mask', 'both'], 'mode must be point, mask, or both' | |
| with torch.autocast(device_type='cuda', dtype=torch.float16): | |
| if mode == 'point': | |
| masks, scores, logits = self.predictor.predict(point_coords=prompts['point_coords'], | |
| point_labels=prompts['point_labels'], | |
| multimask_output=multimask) | |
| elif mode == 'mask': | |
| masks, scores, logits = self.predictor.predict(mask_input=prompts['mask_input'], | |
| multimask_output=multimask) | |
| elif mode == 'both': # both | |
| masks, scores, logits = self.predictor.predict(point_coords=prompts['point_coords'], | |
| point_labels=prompts['point_labels'], | |
| mask_input=prompts['mask_input'], | |
| multimask_output=multimask) | |
| else: | |
| raise("Not implement now!") | |
| # masks (n, h, w), scores (n,), logits (n, 256, 256) | |
| return masks, scores, logits | |
| if __name__ == "__main__": | |
| # load and show an image | |
| image = cv2.imread('/hhd3/gaoshang/truck.jpg') | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # numpy array (h, w, 3) | |
| # initialise BaseSegmenter | |
| SAM_checkpoint= '/ssd1/gaomingqi/checkpoints/sam_vit_h_4b8939.pth' | |
| model_type = 'vit_h' | |
| device = "cuda:4" | |
| base_segmenter = BaseSegmenter(SAM_checkpoint=SAM_checkpoint, model_type=model_type, device=device) | |
| # image embedding (once embedded, multiple prompts can be applied) | |
| base_segmenter.set_image(image) | |
| # examples | |
| # point only ------------------------ | |
| mode = 'point' | |
| prompts = { | |
| 'point_coords': np.array([[500, 375], [1125, 625]]), | |
| 'point_labels': np.array([1, 1]), | |
| } | |
| masks, scores, logits = base_segmenter.predict(prompts, mode, multimask=False) # masks (n, h, w), scores (n,), logits (n, 256, 256) | |
| painted_image = mask_painter(image, masks[np.argmax(scores)].astype('uint8'), background_alpha=0.8) | |
| painted_image = cv2.cvtColor(painted_image, cv2.COLOR_RGB2BGR) # numpy array (h, w, 3) | |
| cv2.imwrite('/hhd3/gaoshang/truck_point.jpg', painted_image) | |
| # both ------------------------ | |
| mode = 'both' | |
| mask_input = logits[np.argmax(scores), :, :] | |
| prompts = {'mask_input': mask_input [None, :, :]} | |
| prompts = { | |
| 'point_coords': np.array([[500, 375], [1125, 625]]), | |
| 'point_labels': np.array([1, 0]), | |
| 'mask_input': mask_input[None, :, :] | |
| } | |
| masks, scores, logits = base_segmenter.predict(prompts, mode, multimask=True) # masks (n, h, w), scores (n,), logits (n, 256, 256) | |
| painted_image = mask_painter(image, masks[np.argmax(scores)].astype('uint8'), background_alpha=0.8) | |
| painted_image = cv2.cvtColor(painted_image, cv2.COLOR_RGB2BGR) # numpy array (h, w, 3) | |
| cv2.imwrite('/hhd3/gaoshang/truck_both.jpg', painted_image) | |
| # mask only ------------------------ | |
| mode = 'mask' | |
| mask_input = logits[np.argmax(scores), :, :] | |
| prompts = {'mask_input': mask_input[None, :, :]} | |
| masks, scores, logits = base_segmenter.predict(prompts, mode, multimask=True) # masks (n, h, w), scores (n,), logits (n, 256, 256) | |
| painted_image = mask_painter(image, masks[np.argmax(scores)].astype('uint8'), background_alpha=0.8) | |
| painted_image = cv2.cvtColor(painted_image, cv2.COLOR_RGB2BGR) # numpy array (h, w, 3) | |
| cv2.imwrite('/hhd3/gaoshang/truck_mask.jpg', painted_image) | |