Spaces:
Sleeping
Sleeping
File size: 35,927 Bytes
3fde652 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 |
import os
import sys
import json
import gradio as gr
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from PIL import Image
import torch
import cv2
# Create necessary directories
os.makedirs('/tmp/image_evaluator_uploads', exist_ok=True)
os.makedirs('/tmp/image_evaluator_results', exist_ok=True)
# Base Evaluator class
class BaseEvaluator:
"""
Base class for all image quality evaluators.
All evaluator implementations should inherit from this class.
"""
def __init__(self, config=None):
"""
Initialize the evaluator with optional configuration.
Args:
config (dict, optional): Configuration parameters for the evaluator.
"""
self.config = config or {}
def evaluate(self, image_path):
"""
Evaluate a single image and return scores.
Args:
image_path (str): Path to the image file.
Returns:
dict: Dictionary containing evaluation scores.
"""
raise NotImplementedError("Subclasses must implement evaluate()")
def batch_evaluate(self, image_paths):
"""
Evaluate multiple images.
Args:
image_paths (list): List of paths to image files.
Returns:
list: List of dictionaries containing evaluation scores for each image.
"""
return [self.evaluate(img_path) for img_path in image_paths]
def get_metadata(self):
"""
Return metadata about this evaluator.
Returns:
dict: Dictionary containing metadata about the evaluator.
"""
raise NotImplementedError("Subclasses must implement get_metadata()")
# Technical Evaluator
class TechnicalEvaluator(BaseEvaluator):
"""
Evaluator for basic technical image quality metrics.
Measures sharpness, noise, artifacts, and other technical aspects.
"""
def __init__(self, config=None):
super().__init__(config)
self.config.setdefault('laplacian_ksize', 3)
self.config.setdefault('blur_threshold', 100)
self.config.setdefault('noise_threshold', 0.05)
def evaluate(self, image_path):
"""
Evaluate technical aspects of an image.
Args:
image_path (str): Path to the image file.
Returns:
dict: Dictionary containing technical evaluation scores.
"""
try:
# Load image
img = cv2.imread(image_path)
if img is None:
return {
'error': 'Failed to load image',
'overall_technical': 0.0
}
# Convert to grayscale for some calculations
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Calculate sharpness using Laplacian variance
laplacian = cv2.Laplacian(gray, cv2.CV_64F, ksize=self.config['laplacian_ksize'])
sharpness_score = np.var(laplacian) / 10000 # Normalize
sharpness_score = min(1.0, sharpness_score) # Cap at 1.0
# Calculate noise level
# Using a simple method based on standard deviation in smooth areas
blur = cv2.GaussianBlur(gray, (11, 11), 0)
diff = cv2.absdiff(gray, blur)
noise_level = np.std(diff) / 255.0
noise_score = 1.0 - min(1.0, noise_level / self.config['noise_threshold'])
# Check for compression artifacts
edges = cv2.Canny(gray, 100, 200)
artifact_score = 1.0 - (np.count_nonzero(edges) / (gray.shape[0] * gray.shape[1]))
artifact_score = max(0.0, min(1.0, artifact_score * 2)) # Adjust range
# Calculate color range and saturation
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
saturation = hsv[:, :, 1]
saturation_score = np.mean(saturation) / 255.0
# Calculate contrast
min_val, max_val, _, _ = cv2.minMaxLoc(gray)
contrast_score = (max_val - min_val) / 255.0
# Calculate overall technical score (weighted average)
overall_technical = (
0.3 * sharpness_score +
0.2 * noise_score +
0.2 * artifact_score +
0.15 * saturation_score +
0.15 * contrast_score
)
return {
'sharpness': float(sharpness_score),
'noise': float(noise_score),
'artifacts': float(artifact_score),
'saturation': float(saturation_score),
'contrast': float(contrast_score),
'overall_technical': float(overall_technical)
}
except Exception as e:
return {
'error': str(e),
'overall_technical': 0.0
}
def get_metadata(self):
"""
Return metadata about this evaluator.
Returns:
dict: Dictionary containing metadata about the evaluator.
"""
return {
'id': 'technical',
'name': 'Technical Metrics',
'description': 'Evaluates basic technical aspects of image quality including sharpness, noise, artifacts, saturation, and contrast.',
'version': '1.0',
'metrics': [
{'id': 'sharpness', 'name': 'Sharpness', 'description': 'Measures image clarity and detail'},
{'id': 'noise', 'name': 'Noise', 'description': 'Measures absence of unwanted variations'},
{'id': 'artifacts', 'name': 'Artifacts', 'description': 'Measures absence of compression artifacts'},
{'id': 'saturation', 'name': 'Saturation', 'description': 'Measures color intensity'},
{'id': 'contrast', 'name': 'Contrast', 'description': 'Measures difference between light and dark areas'},
{'id': 'overall_technical', 'name': 'Overall Technical', 'description': 'Combined technical quality score'}
]
}
# Aesthetic Evaluator
class AestheticEvaluator(BaseEvaluator):
"""
Evaluator for aesthetic image quality.
Uses a simplified aesthetic assessment model.
"""
def __init__(self, config=None):
super().__init__(config)
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def evaluate(self, image_path):
"""
Evaluate aesthetic aspects of an image.
Args:
image_path (str): Path to the image file.
Returns:
dict: Dictionary containing aesthetic evaluation scores.
"""
try:
# Load and preprocess image
img = Image.open(image_path).convert('RGB')
# Convert to numpy array for calculations
img_np = np.array(img)
# Calculate color harmony using standard deviation of colors
r, g, b = img_np[:,:,0], img_np[:,:,1], img_np[:,:,2]
color_std = (np.std(r) + np.std(g) + np.std(b)) / 3
color_harmony = min(1.0, color_std / 80.0) # Normalize
# Calculate composition score using rule of thirds
h, w = img_np.shape[:2]
third_h, third_w = h // 3, w // 3
# Create a rule of thirds grid mask
grid_mask = np.zeros((h, w))
for i in range(1, 3):
grid_mask[third_h * i - 5:third_h * i + 5, :] = 1
grid_mask[:, third_w * i - 5:third_w * i + 5] = 1
# Convert to grayscale for edge detection
gray = np.mean(img_np, axis=2).astype(np.uint8)
# Simple edge detection
edges = np.abs(np.diff(gray, axis=0, prepend=0)) + np.abs(np.diff(gray, axis=1, prepend=0))
edges = edges > 30 # Threshold
# Calculate how many edges fall on the rule of thirds lines
thirds_alignment = np.sum(edges * grid_mask) / max(1, np.sum(edges))
composition_score = min(1.0, thirds_alignment * 3) # Scale up for better distribution
# Calculate visual interest using entropy
hist_r = np.histogram(r, bins=256, range=(0, 256))[0] / (h * w)
hist_g = np.histogram(g, bins=256, range=(0, 256))[0] / (h * w)
hist_b = np.histogram(b, bins=256, range=(0, 256))[0] / (h * w)
entropy_r = -np.sum(hist_r[hist_r > 0] * np.log2(hist_r[hist_r > 0]))
entropy_g = -np.sum(hist_g[hist_g > 0] * np.log2(hist_g[hist_g > 0]))
entropy_b = -np.sum(hist_b[hist_b > 0] * np.log2(hist_b[hist_b > 0]))
entropy = (entropy_r + entropy_g + entropy_b) / 3
visual_interest = min(1.0, entropy / 7.5) # Normalize
# Calculate overall aesthetic score (weighted average)
overall_aesthetic = (
0.4 * color_harmony +
0.3 * composition_score +
0.3 * visual_interest
)
return {
'color_harmony': float(color_harmony),
'composition': float(composition_score),
'visual_interest': float(visual_interest),
'overall_aesthetic': float(overall_aesthetic)
}
except Exception as e:
return {
'error': str(e),
'overall_aesthetic': 0.0
}
def get_metadata(self):
"""
Return metadata about this evaluator.
Returns:
dict: Dictionary containing metadata about the evaluator.
"""
return {
'id': 'aesthetic',
'name': 'Aesthetic Assessment',
'description': 'Evaluates aesthetic qualities of images including color harmony, composition, and visual interest.',
'version': '1.0',
'metrics': [
{'id': 'color_harmony', 'name': 'Color Harmony', 'description': 'Measures how well colors work together'},
{'id': 'composition', 'name': 'Composition', 'description': 'Measures adherence to compositional principles like rule of thirds'},
{'id': 'visual_interest', 'name': 'Visual Interest', 'description': 'Measures how visually engaging the image is'},
{'id': 'overall_aesthetic', 'name': 'Overall Aesthetic', 'description': 'Combined aesthetic quality score'}
]
}
# Anime Style Evaluator
class AnimeStyleEvaluator(BaseEvaluator):
"""
Specialized evaluator for anime-style images.
Focuses on line quality, character design, style consistency, and other anime-specific attributes.
"""
def __init__(self, config=None):
super().__init__(config)
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def evaluate(self, image_path):
"""
Evaluate anime-specific aspects of an image.
Args:
image_path (str): Path to the image file.
Returns:
dict: Dictionary containing anime-style evaluation scores.
"""
try:
# Load image
img = Image.open(image_path).convert('RGB')
img_np = np.array(img)
# Line quality assessment
gray = np.mean(img_np, axis=2).astype(np.uint8)
# Calculate gradients for edge detection
gx = np.abs(np.diff(gray, axis=1, prepend=0))
gy = np.abs(np.diff(gray, axis=0, prepend=0))
# Combine gradients
edges = np.maximum(gx, gy)
# Strong edges are characteristic of anime
strong_edges = edges > 50
edge_ratio = np.sum(strong_edges) / (gray.shape[0] * gray.shape[1])
# Line quality score - anime typically has a higher proportion of strong edges
line_quality = min(1.0, edge_ratio * 20) # Scale appropriately
# Color palette assessment
pixels = img_np.reshape(-1, 3)
sample_size = min(10000, pixels.shape[0])
indices = np.random.choice(pixels.shape[0], sample_size, replace=False)
sampled_pixels = pixels[indices]
# Calculate color diversity (simplified)
color_std = np.std(sampled_pixels, axis=0)
color_diversity = np.mean(color_std) / 128.0 # Normalize
# Anime often has a good balance of diversity but not excessive
color_score = 1.0 - abs(color_diversity - 0.5) * 2 # Penalize too high or too low
# Placeholder for character quality
character_quality = 0.85 # Default value for prototype
# Style consistency assessment
hsv = np.array(img.convert('HSV'))
saturation = hsv[:,:,1]
value = hsv[:,:,2]
# Calculate statistics
sat_mean = np.mean(saturation) / 255.0
val_mean = np.mean(value) / 255.0
# Anime often has higher saturation and controlled brightness
sat_score = 1.0 - abs(sat_mean - 0.7) * 2 # Ideal around 0.7
val_score = 1.0 - abs(val_mean - 0.6) * 2 # Ideal around 0.6
style_consistency = (sat_score + val_score) / 2
# Overall anime score (weighted average)
overall_anime = (
0.3 * line_quality +
0.2 * color_score +
0.25 * character_quality +
0.25 * style_consistency
)
return {
'line_quality': float(line_quality),
'color_palette': float(color_score),
'character_quality': float(character_quality),
'style_consistency': float(style_consistency),
'overall_anime': float(overall_anime)
}
except Exception as e:
return {
'error': str(e),
'overall_anime': 0.0
}
def get_metadata(self):
"""
Return metadata about this evaluator.
Returns:
dict: Dictionary containing metadata about the evaluator.
"""
return {
'id': 'anime_specialized',
'name': 'Anime Style Evaluator',
'description': 'Specialized evaluator for anime-style images, focusing on line quality, color palette, character design, and style consistency.',
'version': '1.0',
'metrics': [
{'id': 'line_quality', 'name': 'Line Quality', 'description': 'Measures clarity and quality of line work'},
{'id': 'color_palette', 'name': 'Color Palette', 'description': 'Evaluates color choices and harmony for anime style'},
{'id': 'character_quality', 'name': 'Character Quality', 'description': 'Assesses character design and rendering'},
{'id': 'style_consistency', 'name': 'Style Consistency', 'description': 'Measures adherence to anime style conventions'},
{'id': 'overall_anime', 'name': 'Overall Anime Quality', 'description': 'Combined anime-specific quality score'}
]
}
# Evaluator Manager
class EvaluatorManager:
"""
Manager class for handling multiple evaluators.
Provides a unified interface for evaluating images with different metrics.
"""
def __init__(self):
"""Initialize the evaluator manager with available evaluators."""
self.evaluators = {}
self._register_default_evaluators()
def _register_default_evaluators(self):
"""Register the default set of evaluators."""
self.register_evaluator(TechnicalEvaluator())
self.register_evaluator(AestheticEvaluator())
self.register_evaluator(AnimeStyleEvaluator())
def register_evaluator(self, evaluator):
"""
Register a new evaluator.
Args:
evaluator (BaseEvaluator): The evaluator to register.
"""
if not isinstance(evaluator, BaseEvaluator):
raise TypeError("Evaluator must be an instance of BaseEvaluator")
metadata = evaluator.get_metadata()
self.evaluators[metadata['id']] = evaluator
def get_available_evaluators(self):
"""
Get a list of available evaluators.
Returns:
list: List of evaluator metadata.
"""
return [evaluator.get_metadata() for evaluator in self.evaluators.values()]
def evaluate_image(self, image_path, evaluator_ids=None):
"""
Evaluate an image using specified evaluators.
Args:
image_path (str): Path to the image file.
evaluator_ids (list, optional): List of evaluator IDs to use.
If None, all available evaluators will be used.
Returns:
dict: Dictionary containing evaluation results from each evaluator.
"""
if not os.path.exists(image_path):
return {'error': f'Image file not found: {image_path}'}
if evaluator_ids is None:
evaluator_ids = list(self.evaluators.keys())
results = {}
for evaluator_id in evaluator_ids:
if evaluator_id in self.evaluators:
results[evaluator_id] = self.evaluators[evaluator_id].evaluate(image_path)
else:
results[evaluator_id] = {'error': f'Evaluator not found: {evaluator_id}'}
return results
def batch_evaluate_images(self, image_paths, evaluator_ids=None):
"""
Evaluate multiple images using specified evaluators.
Args:
image_paths (list): List of paths to image files.
evaluator_ids (list, optional): List of evaluator IDs to use.
If None, all available evaluators will be used.
Returns:
list: List of dictionaries containing evaluation results for each image.
"""
return [self.evaluate_image(path, evaluator_ids) for path in image_paths]
def compare_models(self, model_results):
"""
Compare different models based on evaluation results.
Args:
model_results (dict): Dictionary mapping model names to their evaluation results.
Returns:
dict: Comparison results including rankings and best model.
"""
if not model_results:
return {'error': 'No model results provided for comparison'}
# Calculate average scores for each model across all images and evaluators
model_scores = {}
for model_name, image_results in model_results.items():
model_scores[model_name] = {
'technical': 0.0,
'aesthetic': 0.0,
'anime_specialized': 0.0,
'overall': 0.0
}
image_count = len(image_results)
if image_count == 0:
continue
# Sum up scores across all images
for image_id, evaluations in image_results.items():
if 'technical' in evaluations and 'overall_technical' in evaluations['technical']:
model_scores[model_name]['technical'] += evaluations['technical']['overall_technical']
if 'aesthetic' in evaluations and 'overall_aesthetic' in evaluations['aesthetic']:
model_scores[model_name]['aesthetic'] += evaluations['aesthetic']['overall_aesthetic']
if 'anime_specialized' in evaluations and 'overall_anime' in evaluations['anime_specialized']:
model_scores[model_name]['anime_specialized'] += evaluations['anime_specialized']['overall_anime']
# Calculate averages
model_scores[model_name]['technical'] /= image_count
model_scores[model_name]['aesthetic'] /= image_count
model_scores[model_name]['anime_specialized'] /= image_count
# Calculate overall score (weighted average of all metrics)
model_scores[model_name]['overall'] = (
0.3 * model_scores[model_name]['technical'] +
0.4 * model_scores[model_name]['aesthetic'] +
0.3 * model_scores[model_name]['anime_specialized']
)
# Rank models by overall score
rankings = sorted(
[(model, scores['overall']) for model, scores in model_scores.items()],
key=lambda x: x[1],
reverse=True
)
# Format rankings
formatted_rankings = [
{'rank': i+1, 'model': model, 'score': score}
for i, (model, score) in enumerate(rankings)
]
# Determine best model
best_model = rankings[0][0] if rankings else None
# Format comparison metrics
comparison_metrics = {
'technical': {model: scores['technical'] for model, scores in model_scores.items()},
'aesthetic': {model: scores['aesthetic'] for model, scores in model_scores.items()},
'anime_specialized': {model: scores['anime_specialized'] for model, scores in model_scores.items()},
'overall': {model: scores['overall'] for model, scores in model_scores.items()}
}
return {
'best_model': best_model,
'rankings': formatted_rankings,
'comparison_metrics': comparison_metrics
}
# Initialize evaluator manager
evaluator_manager = EvaluatorManager()
# Global variables to store uploaded images and results
uploaded_images = {}
evaluation_results = {}
def evaluate_images(images, model_name, selected_evaluators):
"""
Evaluate uploaded images using selected evaluators.
Args:
images (list): List of uploaded image files
model_name (str): Name of the model that generated these images
selected_evaluators (list): List of evaluator IDs to use
Returns:
str: Status message
"""
global uploaded_images, evaluation_results
if not images:
return "No images uploaded."
if not model_name:
model_name = "unknown_model"
# Save uploaded images
if model_name not in uploaded_images:
uploaded_images[model_name] = []
image_paths = []
for img in images:
# Save image to temporary file
img_path = f"/tmp/image_evaluator_uploads/{model_name}_{len(uploaded_images[model_name])}.png"
os.makedirs(os.path.dirname(img_path), exist_ok=True)
Image.open(img).save(img_path)
# Add to uploaded images
uploaded_images[model_name].append({
'path': img_path,
'id': f"{model_name}_{len(uploaded_images[model_name])}"
})
image_paths.append(img_path)
# Evaluate images
if not selected_evaluators:
selected_evaluators = ['technical', 'aesthetic', 'anime_specialized']
results = {}
for i, img_path in enumerate(image_paths):
img_id = uploaded_images[model_name][i]['id']
results[img_id] = evaluator_manager.evaluate_image(img_path, selected_evaluators)
# Store results
if model_name not in evaluation_results:
evaluation_results[model_name] = {}
evaluation_results[model_name].update(results)
return f"Evaluated {len(images)} images for model '{model_name}'."
def compare_models():
"""
Compare models based on evaluation results.
Returns:
tuple: (comparison table HTML, overall chart, radar chart)
"""
global evaluation_results
if not evaluation_results or len(evaluation_results) < 2:
return "Need at least two models with evaluated images for comparison.", None, None
# Compare models
comparison = evaluator_manager.compare_models(evaluation_results)
# Create comparison table
models = list(evaluation_results.keys())
metrics = ['technical', 'aesthetic', 'anime_specialized', 'overall']
data = []
for model in models:
row = {'Model': model}
for metric in metrics:
if metric in comparison['comparison_metrics'] and model in comparison['comparison_metrics'][metric]:
row[metric.capitalize()] = comparison['comparison_metrics'][metric][model]
else:
row[metric.capitalize()] = 0.0
data.append(row)
df = pd.DataFrame(data)
# Add ranking information
for rank_info in comparison['rankings']:
if rank_info['model'] in df['Model'].values:
df.loc[df['Model'] == rank_info['model'], 'Rank'] = rank_info['rank']
# Sort by rank
df = df.sort_values('Rank')
# Create overall comparison chart
plt.figure(figsize=(10, 6))
overall_scores = [comparison['comparison_metrics']['overall'].get(model, 0) for model in models]
bars = plt.bar(models, overall_scores, color='skyblue')
# Add value labels on top of bars
for bar in bars:
height = bar.get_height()
plt.text(bar.get_x() + bar.get_width()/2., height + 0.01,
f'{height:.2f}', ha='center', va='bottom')
plt.title('Overall Quality Scores by Model')
plt.xlabel('Model')
plt.ylabel('Score')
plt.ylim(0, 1.1)
plt.grid(axis='y', linestyle='--', alpha=0.7)
# Save the chart
overall_chart_path = "/tmp/image_evaluator_results/overall_comparison.png"
os.makedirs(os.path.dirname(overall_chart_path), exist_ok=True)
plt.savefig(overall_chart_path)
plt.close()
# Create radar chart
categories = [m.capitalize() for m in metrics[:-1]] # Exclude 'overall'
N = len(categories)
# Create angles for each metric
angles = [n / float(N) * 2 * np.pi for n in range(N)]
angles += angles[:1] # Close the loop
# Create radar chart
plt.figure(figsize=(10, 10))
ax = plt.subplot(111, polar=True)
# Add lines for each model
colors = plt.cm.tab10(np.linspace(0, 1, len(models)))
for i, model in enumerate(models):
values = [comparison['comparison_metrics'][metric].get(model, 0) for metric in metrics[:-1]]
values += values[:1] # Close the loop
ax.plot(angles, values, linewidth=2, linestyle='solid', label=model, color=colors[i])
ax.fill(angles, values, alpha=0.1, color=colors[i])
# Set category labels
plt.xticks(angles[:-1], categories)
# Set y-axis limits
ax.set_ylim(0, 1)
# Add legend
plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1))
plt.title('Detailed Metrics Comparison by Model')
# Save the chart
radar_chart_path = "/tmp/image_evaluator_results/radar_comparison.png"
plt.savefig(radar_chart_path)
plt.close()
# Create result message
result_message = f"Best model: {comparison['best_model']}\n\nModel rankings:\n"
for rank in comparison['rankings']:
result_message += f"{rank['rank']}. {rank['model']} (score: {rank['score']:.2f})\n"
return result_message, overall_chart_path, radar_chart_path
def export_results(format_type):
"""
Export evaluation results to file.
Args:
format_type (str): Export format ('csv', 'json', or 'html')
Returns:
str: Path to exported file
"""
global evaluation_results
if not evaluation_results:
return "No evaluation results to export."
# Create output directory
output_dir = "/tmp/image_evaluator_results"
os.makedirs(output_dir, exist_ok=True)
# Compare models if multiple models are available
if len(evaluation_results) >= 2:
comparison = evaluator_manager.compare_models(evaluation_results)
else:
comparison = None
# Create DataFrame for the results
models = list(evaluation_results.keys())
metrics = ['technical', 'aesthetic', 'anime_specialized', 'overall']
if comparison:
data = []
for model in models:
row = {'Model': model}
for metric in metrics:
if metric in comparison['comparison_metrics'] and model in comparison['comparison_metrics'][metric]:
row[metric.capitalize()] = comparison['comparison_metrics'][metric][model]
else:
row[metric.capitalize()] = 0.0
data.append(row)
df = pd.DataFrame(data)
# Add ranking information
for rank_info in comparison['rankings']:
if rank_info['model'] in df['Model'].values:
df.loc[df['Model'] == rank_info['model'], 'Rank'] = rank_info['rank']
# Sort by rank
df = df.sort_values('Rank')
else:
# Single model, create detailed results
model = models[0]
data = []
for img_id, results in evaluation_results[model].items():
row = {'Image': img_id}
for evaluator_id, evaluator_results in results.items():
for metric, value in evaluator_results.items():
row[f"{evaluator_id}_{metric}"] = value
data.append(row)
df = pd.DataFrame(data)
# Export based on format
if format_type == 'csv':
output_path = os.path.join(output_dir, 'evaluation_results.csv')
df.to_csv(output_path, index=False)
elif format_type == 'json':
output_path = os.path.join(output_dir, 'evaluation_results.json')
if comparison:
export_data = {
'comparison': comparison,
'results': evaluation_results
}
else:
export_data = evaluation_results
with open(output_path, 'w') as f:
json.dump(export_data, f, indent=2)
elif format_type == 'html':
output_path = os.path.join(output_dir, 'evaluation_results.html')
df.to_html(output_path, index=False)
else:
return f"Unsupported format: {format_type}"
return output_path
def reset_data():
"""Reset all uploaded images and evaluation results."""
global uploaded_images, evaluation_results
uploaded_images = {}
evaluation_results = {}
return "All data has been reset."
def create_interface():
"""Create Gradio interface."""
# Get available evaluators
available_evaluators = evaluator_manager.get_available_evaluators()
evaluator_choices = [e['id'] for e in available_evaluators]
with gr.Blocks(title="Image Evaluator") as interface:
gr.Markdown("# Image Evaluator")
gr.Markdown("Tool for evaluating and comparing images generated by different AI models")
with gr.Tab("Upload & Evaluate"):
with gr.Row():
with gr.Column():
images_input = gr.File(file_count="multiple", label="Upload Images")
model_name_input = gr.Textbox(label="Model Name", placeholder="Enter model name")
evaluator_select = gr.CheckboxGroup(choices=evaluator_choices, label="Select Evaluators", value=evaluator_choices)
evaluate_button = gr.Button("Evaluate Images")
with gr.Column():
evaluation_output = gr.Textbox(label="Evaluation Status")
evaluate_button.click(
evaluate_images,
inputs=[images_input, model_name_input, evaluator_select],
outputs=evaluation_output
)
with gr.Tab("Compare Models"):
with gr.Row():
compare_button = gr.Button("Compare Models")
with gr.Row():
with gr.Column():
comparison_output = gr.Textbox(label="Comparison Results")
with gr.Column():
overall_chart = gr.Image(label="Overall Scores")
radar_chart = gr.Image(label="Detailed Metrics")
compare_button.click(
compare_models,
inputs=[],
outputs=[comparison_output, overall_chart, radar_chart]
)
with gr.Tab("Export Results"):
with gr.Row():
format_select = gr.Radio(choices=["csv", "json", "html"], label="Export Format", value="csv")
export_button = gr.Button("Export Results")
with gr.Row():
export_output = gr.Textbox(label="Export Status")
export_button.click(
export_results,
inputs=[format_select],
outputs=export_output
)
with gr.Tab("Help"):
gr.Markdown("""
## How to Use Image Evaluator
### Step 1: Upload Images
- Go to the "Upload & Evaluate" tab
- Upload images for a specific model
- Enter the model name
- Select which evaluators to use
- Click "Evaluate Images"
- Repeat for each model you want to compare
### Step 2: Compare Models
- Go to the "Compare Models" tab
- Click "Compare Models" to see results
- The best model will be highlighted
- View charts for visual comparison
### Step 3: Export Results
- Go to the "Export Results" tab
- Select export format (CSV, JSON, or HTML)
- Click "Export Results"
- Download the exported file
### Available Metrics
#### Technical Metrics
- Sharpness: Measures image clarity and detail
- Noise: Measures absence of unwanted variations
- Artifacts: Measures absence of compression artifacts
- Saturation: Measures color intensity
- Contrast: Measures difference between light and dark areas
#### Aesthetic Metrics
- Color Harmony: Measures how well colors work together
- Composition: Measures adherence to compositional principles
- Visual Interest: Measures how visually engaging the image is
#### Anime-Specific Metrics
- Line Quality: Measures clarity and quality of line work
- Color Palette: Evaluates color choices for anime style
- Character Quality: Assesses character design and rendering
- Style Consistency: Measures adherence to anime style conventions
""")
with gr.Row():
reset_button = gr.Button("Reset All Data")
reset_output = gr.Textbox(label="Reset Status")
reset_button.click(
reset_data,
inputs=[],
outputs=reset_output
)
return interface
# Create and launch the interface
interface = create_interface()
if __name__ == "__main__":
interface.launch()
|