Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +1320 -156
- requirements.txt +3 -0
app.py
CHANGED
|
@@ -1,98 +1,350 @@
|
|
| 1 |
import os
|
| 2 |
import sys
|
| 3 |
import json
|
| 4 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import numpy as np
|
| 6 |
-
import pandas as pd
|
| 7 |
-
import matplotlib.pyplot as plt
|
| 8 |
-
from PIL import Image
|
| 9 |
import torch
|
| 10 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Create necessary directories
|
| 13 |
os.makedirs('/tmp/image_evaluator_uploads', exist_ok=True)
|
| 14 |
os.makedirs('/tmp/image_evaluator_results', exist_ok=True)
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
"""
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
"""
|
| 30 |
-
self.config = config or {}
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
Return metadata about this evaluator.
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
"""
|
| 68 |
Evaluator for basic technical image quality metrics.
|
| 69 |
Measures sharpness, noise, artifacts, and other technical aspects.
|
| 70 |
"""
|
| 71 |
|
| 72 |
def __init__(self, config=None):
|
| 73 |
-
|
| 74 |
self.config.setdefault('laplacian_ksize', 3)
|
| 75 |
self.config.setdefault('blur_threshold', 100)
|
| 76 |
self.config.setdefault('noise_threshold', 0.05)
|
| 77 |
|
| 78 |
-
def evaluate(self,
|
| 79 |
"""
|
| 80 |
Evaluate technical aspects of an image.
|
| 81 |
|
| 82 |
Args:
|
| 83 |
-
|
| 84 |
|
| 85 |
Returns:
|
| 86 |
dict: Dictionary containing technical evaluation scores.
|
| 87 |
"""
|
| 88 |
try:
|
| 89 |
# Load image
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
# Convert to grayscale for some calculations
|
| 98 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
@@ -132,19 +384,21 @@ class TechnicalEvaluator(BaseEvaluator):
|
|
| 132 |
0.15 * contrast_score
|
| 133 |
)
|
| 134 |
|
|
|
|
| 135 |
return {
|
| 136 |
-
'sharpness': float(sharpness_score),
|
| 137 |
-
'noise': float(noise_score),
|
| 138 |
-
'artifacts': float(artifact_score),
|
| 139 |
-
'saturation': float(saturation_score),
|
| 140 |
-
'contrast': float(contrast_score),
|
| 141 |
-
'overall_technical': float(overall_technical)
|
| 142 |
}
|
| 143 |
|
| 144 |
except Exception as e:
|
|
|
|
| 145 |
return {
|
| 146 |
'error': str(e),
|
| 147 |
-
'overall_technical':
|
| 148 |
}
|
| 149 |
|
| 150 |
def get_metadata(self):
|
|
@@ -169,30 +423,55 @@ class TechnicalEvaluator(BaseEvaluator):
|
|
| 169 |
]
|
| 170 |
}
|
| 171 |
|
| 172 |
-
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
"""
|
| 175 |
Evaluator for aesthetic image quality.
|
| 176 |
-
Uses a
|
| 177 |
"""
|
| 178 |
|
| 179 |
def __init__(self, config=None):
|
| 180 |
-
|
| 181 |
-
self.device =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
"""
|
| 185 |
Evaluate aesthetic aspects of an image.
|
| 186 |
|
| 187 |
Args:
|
| 188 |
-
|
| 189 |
|
| 190 |
Returns:
|
| 191 |
dict: Dictionary containing aesthetic evaluation scores.
|
| 192 |
"""
|
| 193 |
try:
|
| 194 |
-
# Load
|
| 195 |
-
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
# Convert to numpy array for calculations
|
| 198 |
img_np = np.array(img)
|
|
@@ -235,24 +514,50 @@ class AestheticEvaluator(BaseEvaluator):
|
|
| 235 |
entropy = (entropy_r + entropy_g + entropy_b) / 3
|
| 236 |
visual_interest = min(1.0, entropy / 7.5) # Normalize
|
| 237 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
# Calculate overall aesthetic score (weighted average)
|
| 239 |
overall_aesthetic = (
|
| 240 |
-
0.
|
| 241 |
-
0.
|
| 242 |
-
0.
|
|
|
|
|
|
|
| 243 |
)
|
| 244 |
|
|
|
|
| 245 |
return {
|
| 246 |
-
'color_harmony': float(color_harmony),
|
| 247 |
-
'composition': float(composition_score),
|
| 248 |
-
'visual_interest': float(visual_interest),
|
| 249 |
-
'
|
|
|
|
|
|
|
| 250 |
}
|
| 251 |
|
| 252 |
except Exception as e:
|
|
|
|
| 253 |
return {
|
| 254 |
'error': str(e),
|
| 255 |
-
'overall_aesthetic':
|
| 256 |
}
|
| 257 |
|
| 258 |
def get_metadata(self):
|
|
@@ -271,34 +576,58 @@ class AestheticEvaluator(BaseEvaluator):
|
|
| 271 |
{'id': 'color_harmony', 'name': 'Color Harmony', 'description': 'Measures how well colors work together'},
|
| 272 |
{'id': 'composition', 'name': 'Composition', 'description': 'Measures adherence to compositional principles like rule of thirds'},
|
| 273 |
{'id': 'visual_interest', 'name': 'Visual Interest', 'description': 'Measures how visually engaging the image is'},
|
|
|
|
|
|
|
| 274 |
{'id': 'overall_aesthetic', 'name': 'Overall Aesthetic', 'description': 'Combined aesthetic quality score'}
|
| 275 |
]
|
| 276 |
}
|
| 277 |
|
| 278 |
-
|
| 279 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
"""
|
| 281 |
Specialized evaluator for anime-style images.
|
| 282 |
Focuses on line quality, character design, style consistency, and other anime-specific attributes.
|
| 283 |
"""
|
| 284 |
|
| 285 |
def __init__(self, config=None):
|
| 286 |
-
|
| 287 |
-
self.device =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
|
| 289 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
"""
|
| 291 |
Evaluate anime-specific aspects of an image.
|
| 292 |
|
| 293 |
Args:
|
| 294 |
-
|
| 295 |
|
| 296 |
Returns:
|
| 297 |
dict: Dictionary containing anime-style evaluation scores.
|
| 298 |
"""
|
| 299 |
try:
|
| 300 |
# Load image
|
| 301 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
img_np = np.array(img)
|
| 303 |
|
| 304 |
# Line quality assessment
|
|
@@ -331,8 +660,23 @@ class AnimeStyleEvaluator(BaseEvaluator):
|
|
| 331 |
# Anime often has a good balance of diversity but not excessive
|
| 332 |
color_score = 1.0 - abs(color_diversity - 0.5) * 2 # Penalize too high or too low
|
| 333 |
|
| 334 |
-
#
|
| 335 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 336 |
|
| 337 |
# Style consistency assessment
|
| 338 |
hsv = np.array(img.convert('HSV'))
|
|
@@ -351,24 +695,28 @@ class AnimeStyleEvaluator(BaseEvaluator):
|
|
| 351 |
|
| 352 |
# Overall anime score (weighted average)
|
| 353 |
overall_anime = (
|
| 354 |
-
0.
|
| 355 |
-
0.
|
| 356 |
-
0.
|
| 357 |
-
0.
|
|
|
|
| 358 |
)
|
| 359 |
|
|
|
|
| 360 |
return {
|
| 361 |
-
'line_quality': float(line_quality),
|
| 362 |
-
'color_palette': float(color_score),
|
| 363 |
-
'character_quality': float(
|
| 364 |
-
'
|
| 365 |
-
'
|
|
|
|
| 366 |
}
|
| 367 |
|
| 368 |
except Exception as e:
|
|
|
|
| 369 |
return {
|
| 370 |
'error': str(e),
|
| 371 |
-
'overall_anime':
|
| 372 |
}
|
| 373 |
|
| 374 |
def get_metadata(self):
|
|
@@ -386,13 +734,183 @@ class AnimeStyleEvaluator(BaseEvaluator):
|
|
| 386 |
'metrics': [
|
| 387 |
{'id': 'line_quality', 'name': 'Line Quality', 'description': 'Measures clarity and quality of line work'},
|
| 388 |
{'id': 'color_palette', 'name': 'Color Palette', 'description': 'Evaluates color choices and harmony for anime style'},
|
| 389 |
-
{'id': 'character_quality', 'name': 'Character Quality', 'description': 'Assesses character design and rendering'},
|
|
|
|
| 390 |
{'id': 'style_consistency', 'name': 'Style Consistency', 'description': 'Measures adherence to anime style conventions'},
|
| 391 |
{'id': 'overall_anime', 'name': 'Overall Anime Quality', 'description': 'Combined anime-specific quality score'}
|
| 392 |
]
|
| 393 |
}
|
| 394 |
|
| 395 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 396 |
class EvaluatorManager:
|
| 397 |
"""
|
| 398 |
Manager class for handling multiple evaluators.
|
|
@@ -402,24 +920,22 @@ class EvaluatorManager:
|
|
| 402 |
def __init__(self):
|
| 403 |
"""Initialize the evaluator manager with available evaluators."""
|
| 404 |
self.evaluators = {}
|
|
|
|
| 405 |
self._register_default_evaluators()
|
| 406 |
|
| 407 |
def _register_default_evaluators(self):
|
| 408 |
"""Register the default set of evaluators."""
|
| 409 |
self.register_evaluator(TechnicalEvaluator())
|
| 410 |
self.register_evaluator(AestheticEvaluator())
|
| 411 |
-
self.register_evaluator(
|
| 412 |
|
| 413 |
def register_evaluator(self, evaluator):
|
| 414 |
"""
|
| 415 |
Register a new evaluator.
|
| 416 |
|
| 417 |
Args:
|
| 418 |
-
evaluator
|
| 419 |
"""
|
| 420 |
-
if not isinstance(evaluator, BaseEvaluator):
|
| 421 |
-
raise TypeError("Evaluator must be an instance of BaseEvaluator")
|
| 422 |
-
|
| 423 |
metadata = evaluator.get_metadata()
|
| 424 |
self.evaluators[metadata['id']] = evaluator
|
| 425 |
|
|
@@ -432,53 +948,60 @@ class EvaluatorManager:
|
|
| 432 |
"""
|
| 433 |
return [evaluator.get_metadata() for evaluator in self.evaluators.values()]
|
| 434 |
|
| 435 |
-
def evaluate_image(self,
|
| 436 |
"""
|
| 437 |
Evaluate an image using specified evaluators.
|
| 438 |
|
| 439 |
Args:
|
| 440 |
-
|
| 441 |
-
evaluator_ids
|
| 442 |
If None, all available evaluators will be used.
|
| 443 |
|
| 444 |
Returns:
|
| 445 |
dict: Dictionary containing evaluation results from each evaluator.
|
| 446 |
"""
|
| 447 |
-
if
|
| 448 |
-
|
|
|
|
| 449 |
|
| 450 |
if evaluator_ids is None:
|
| 451 |
evaluator_ids = list(self.evaluators.keys())
|
| 452 |
|
| 453 |
results = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 454 |
for evaluator_id in evaluator_ids:
|
| 455 |
if evaluator_id in self.evaluators:
|
| 456 |
-
results[evaluator_id] = self.evaluators[evaluator_id].evaluate(
|
| 457 |
else:
|
| 458 |
results[evaluator_id] = {'error': f'Evaluator not found: {evaluator_id}'}
|
| 459 |
|
| 460 |
return results
|
| 461 |
|
| 462 |
-
def batch_evaluate_images(self,
|
| 463 |
"""
|
| 464 |
Evaluate multiple images using specified evaluators.
|
| 465 |
|
| 466 |
Args:
|
| 467 |
-
|
| 468 |
-
evaluator_ids
|
| 469 |
If None, all available evaluators will be used.
|
| 470 |
|
| 471 |
Returns:
|
| 472 |
list: List of dictionaries containing evaluation results for each image.
|
| 473 |
"""
|
| 474 |
-
return [self.evaluate_image(
|
| 475 |
|
| 476 |
def compare_models(self, model_results):
|
| 477 |
"""
|
| 478 |
Compare different models based on evaluation results.
|
| 479 |
|
| 480 |
Args:
|
| 481 |
-
model_results
|
| 482 |
|
| 483 |
Returns:
|
| 484 |
dict: Comparison results including rankings and best model.
|
|
@@ -554,24 +1077,221 @@ class EvaluatorManager:
|
|
| 554 |
'comparison_metrics': comparison_metrics
|
| 555 |
}
|
| 556 |
|
| 557 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 558 |
evaluator_manager = EvaluatorManager()
|
|
|
|
| 559 |
|
| 560 |
# Global variables to store uploaded images and results
|
| 561 |
uploaded_images = {}
|
| 562 |
evaluation_results = {}
|
| 563 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 564 |
def evaluate_images(images, model_name, selected_evaluators):
|
| 565 |
"""
|
| 566 |
Evaluate uploaded images using selected evaluators.
|
| 567 |
|
| 568 |
Args:
|
| 569 |
-
images
|
| 570 |
-
model_name
|
| 571 |
-
selected_evaluators
|
| 572 |
|
| 573 |
Returns:
|
| 574 |
-
str: Status message
|
| 575 |
"""
|
| 576 |
global uploaded_images, evaluation_results
|
| 577 |
|
|
@@ -617,6 +1337,61 @@ def evaluate_images(images, model_name, selected_evaluators):
|
|
| 617 |
|
| 618 |
return f"Evaluated {len(images)} images for model '{model_name}'."
|
| 619 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 620 |
def compare_models():
|
| 621 |
"""
|
| 622 |
Compare models based on evaluation results.
|
|
@@ -670,7 +1445,7 @@ def compare_models():
|
|
| 670 |
plt.title('Overall Quality Scores by Model')
|
| 671 |
plt.xlabel('Model')
|
| 672 |
plt.ylabel('Score')
|
| 673 |
-
plt.ylim(0,
|
| 674 |
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
| 675 |
|
| 676 |
# Save the chart
|
|
@@ -705,7 +1480,7 @@ def compare_models():
|
|
| 705 |
plt.xticks(angles[:-1], categories)
|
| 706 |
|
| 707 |
# Set y-axis limits
|
| 708 |
-
ax.set_ylim(0,
|
| 709 |
|
| 710 |
# Add legend
|
| 711 |
plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1))
|
|
@@ -724,15 +1499,147 @@ def compare_models():
|
|
| 724 |
|
| 725 |
return result_message, overall_chart_path, radar_chart_path
|
| 726 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 727 |
def export_results(format_type):
|
| 728 |
"""
|
| 729 |
Export evaluation results to file.
|
| 730 |
|
| 731 |
Args:
|
| 732 |
-
format_type
|
| 733 |
|
| 734 |
Returns:
|
| 735 |
-
str: Path to exported file
|
| 736 |
"""
|
| 737 |
global evaluation_results
|
| 738 |
|
|
@@ -781,9 +1688,16 @@ def export_results(format_type):
|
|
| 781 |
for img_id, results in evaluation_results[model].items():
|
| 782 |
row = {'Image': img_id}
|
| 783 |
|
| 784 |
-
|
| 785 |
-
|
| 786 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 787 |
|
| 788 |
data.append(row)
|
| 789 |
|
|
@@ -808,7 +1722,211 @@ def export_results(format_type):
|
|
| 808 |
json.dump(export_data, f, indent=2)
|
| 809 |
elif format_type == 'html':
|
| 810 |
output_path = os.path.join(output_dir, 'evaluation_results.html')
|
| 811 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 812 |
else:
|
| 813 |
return f"Unsupported format: {format_type}"
|
| 814 |
|
|
@@ -833,20 +1951,21 @@ def create_interface():
|
|
| 833 |
|
| 834 |
with gr.Tab("Upload & Evaluate"):
|
| 835 |
with gr.Row():
|
| 836 |
-
with gr.Column():
|
| 837 |
images_input = gr.File(file_count="multiple", label="Upload Images")
|
| 838 |
model_name_input = gr.Textbox(label="Model Name", placeholder="Enter model name")
|
| 839 |
evaluator_select = gr.CheckboxGroup(choices=evaluator_choices, label="Select Evaluators", value=evaluator_choices)
|
|
|
|
|
|
|
| 840 |
evaluate_button = gr.Button("Evaluate Images")
|
| 841 |
|
| 842 |
-
with gr.Column():
|
| 843 |
-
|
| 844 |
-
|
| 845 |
-
|
| 846 |
-
|
| 847 |
-
|
| 848 |
-
|
| 849 |
-
)
|
| 850 |
|
| 851 |
with gr.Tab("Compare Models"):
|
| 852 |
with gr.Row():
|
|
@@ -859,26 +1978,25 @@ def create_interface():
|
|
| 859 |
with gr.Column():
|
| 860 |
overall_chart = gr.Image(label="Overall Scores")
|
| 861 |
radar_chart = gr.Image(label="Detailed Metrics")
|
| 862 |
-
|
| 863 |
-
|
| 864 |
-
|
| 865 |
-
|
| 866 |
-
|
| 867 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 868 |
|
| 869 |
with gr.Tab("Export Results"):
|
| 870 |
with gr.Row():
|
| 871 |
-
format_select = gr.Radio(choices=["csv", "json", "html"], label="Export Format", value="
|
| 872 |
export_button = gr.Button("Export Results")
|
| 873 |
|
| 874 |
with gr.Row():
|
| 875 |
export_output = gr.Textbox(label="Export Status")
|
| 876 |
-
|
| 877 |
-
export_button.click(
|
| 878 |
-
export_results,
|
| 879 |
-
inputs=[format_select],
|
| 880 |
-
outputs=export_output
|
| 881 |
-
)
|
| 882 |
|
| 883 |
with gr.Tab("Help"):
|
| 884 |
gr.Markdown("""
|
|
@@ -898,9 +2016,14 @@ def create_interface():
|
|
| 898 |
- The best model will be highlighted
|
| 899 |
- View charts for visual comparison
|
| 900 |
|
| 901 |
-
### Step 3:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 902 |
- Go to the "Export Results" tab
|
| 903 |
-
- Select export format (CSV, JSON, or
|
| 904 |
- Click "Export Results"
|
| 905 |
- Download the exported file
|
| 906 |
|
|
@@ -917,11 +2040,14 @@ def create_interface():
|
|
| 917 |
- Color Harmony: Measures how well colors work together
|
| 918 |
- Composition: Measures adherence to compositional principles
|
| 919 |
- Visual Interest: Measures how visually engaging the image is
|
|
|
|
|
|
|
| 920 |
|
| 921 |
#### Anime-Specific Metrics
|
| 922 |
- Line Quality: Measures clarity and quality of line work
|
| 923 |
- Color Palette: Evaluates color choices for anime style
|
| 924 |
-
- Character Quality: Assesses character design and rendering
|
|
|
|
| 925 |
- Style Consistency: Measures adherence to anime style conventions
|
| 926 |
""")
|
| 927 |
|
|
@@ -929,10 +2055,47 @@ def create_interface():
|
|
| 929 |
reset_button = gr.Button("Reset All Data")
|
| 930 |
reset_output = gr.Textbox(label="Reset Status")
|
| 931 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 932 |
reset_button.click(
|
| 933 |
reset_data,
|
| 934 |
inputs=[],
|
| 935 |
-
outputs=reset_output
|
| 936 |
)
|
| 937 |
|
| 938 |
return interface
|
|
@@ -941,4 +2104,5 @@ def create_interface():
|
|
| 941 |
interface = create_interface()
|
| 942 |
|
| 943 |
if __name__ == "__main__":
|
| 944 |
-
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import sys
|
| 3 |
import json
|
| 4 |
+
import base64
|
| 5 |
+
import asyncio
|
| 6 |
+
import tempfile
|
| 7 |
+
import re
|
| 8 |
+
from io import BytesIO
|
| 9 |
+
from typing import List, Dict, Any, Optional, Tuple
|
| 10 |
+
|
| 11 |
+
import cv2
|
| 12 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
| 13 |
import torch
|
| 14 |
+
import gradio as gr
|
| 15 |
+
from PIL import Image, PngImagePlugin, ExifTags
|
| 16 |
+
import matplotlib.pyplot as plt
|
| 17 |
+
import pandas as pd
|
| 18 |
+
from transformers import pipeline, AutoProcessor, AutoModelForImageClassification
|
| 19 |
+
from huggingface_hub import hf_hub_download
|
| 20 |
|
| 21 |
# Create necessary directories
|
| 22 |
os.makedirs('/tmp/image_evaluator_uploads', exist_ok=True)
|
| 23 |
os.makedirs('/tmp/image_evaluator_results', exist_ok=True)
|
| 24 |
|
| 25 |
+
#####################################
|
| 26 |
+
# Model Definitions #
|
| 27 |
+
#####################################
|
| 28 |
+
|
| 29 |
+
class MLP(torch.nn.Module):
|
| 30 |
+
"""A multi-layer perceptron for image feature regression."""
|
| 31 |
+
def __init__(self, input_size: int, batch_norm: bool = True):
|
| 32 |
+
super().__init__()
|
| 33 |
+
self.input_size = input_size
|
| 34 |
+
self.layers = torch.nn.Sequential(
|
| 35 |
+
torch.nn.Linear(self.input_size, 2048),
|
| 36 |
+
torch.nn.ReLU(),
|
| 37 |
+
torch.nn.BatchNorm1d(2048) if batch_norm else torch.nn.Identity(),
|
| 38 |
+
torch.nn.Dropout(0.3),
|
| 39 |
+
torch.nn.Linear(2048, 512),
|
| 40 |
+
torch.nn.ReLU(),
|
| 41 |
+
torch.nn.BatchNorm1d(512) if batch_norm else torch.nn.Identity(),
|
| 42 |
+
torch.nn.Dropout(0.3),
|
| 43 |
+
torch.nn.Linear(512, 256),
|
| 44 |
+
torch.nn.ReLU(),
|
| 45 |
+
torch.nn.BatchNorm1d(256) if batch_norm else torch.nn.Identity(),
|
| 46 |
+
torch.nn.Dropout(0.2),
|
| 47 |
+
torch.nn.Linear(256, 128),
|
| 48 |
+
torch.nn.ReLU(),
|
| 49 |
+
torch.nn.BatchNorm1d(128) if batch_norm else torch.nn.Identity(),
|
| 50 |
+
torch.nn.Dropout(0.1),
|
| 51 |
+
torch.nn.Linear(128, 32),
|
| 52 |
+
torch.nn.ReLU(),
|
| 53 |
+
torch.nn.Linear(32, 1)
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 57 |
+
return self.layers(x)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
class WaifuScorer:
|
| 61 |
+
"""WaifuScorer model that uses CLIP for feature extraction and a custom MLP for scoring."""
|
| 62 |
+
def __init__(self, model_path: str = None, device: str = None, cache_dir: str = None, verbose: bool = False):
|
| 63 |
+
self.verbose = verbose
|
| 64 |
+
self.device = device if device else ('cuda' if torch.cuda.is_available() else 'cpu')
|
| 65 |
+
self.dtype = torch.float32
|
| 66 |
+
self.available = False
|
| 67 |
+
|
| 68 |
+
try:
|
| 69 |
+
# Try to import CLIP
|
| 70 |
+
try:
|
| 71 |
+
import clip
|
| 72 |
+
self.clip_available = True
|
| 73 |
+
except ImportError:
|
| 74 |
+
print("CLIP not available, using alternative feature extractor")
|
| 75 |
+
self.clip_available = False
|
| 76 |
+
|
| 77 |
+
# Set default model path if not provided
|
| 78 |
+
if model_path is None:
|
| 79 |
+
model_path = "Eugeoter/waifu-scorer-v3/model.pth"
|
| 80 |
+
if self.verbose:
|
| 81 |
+
print(f"Model path not provided. Using default: {model_path}")
|
| 82 |
+
|
| 83 |
+
# Download model if not found locally
|
| 84 |
+
if not os.path.isfile(model_path):
|
| 85 |
+
try:
|
| 86 |
+
username, repo_id, model_name = model_path.split("/")
|
| 87 |
+
model_path = hf_hub_download(f"{username}/{repo_id}", model_name, cache_dir=cache_dir)
|
| 88 |
+
except Exception as e:
|
| 89 |
+
print(f"Error downloading model: {e}")
|
| 90 |
+
# Fallback to local path
|
| 91 |
+
model_path = os.path.join(os.path.dirname(__file__), "models", "waifu_scorer_v3.pth")
|
| 92 |
+
if not os.path.exists(model_path):
|
| 93 |
+
os.makedirs(os.path.dirname(model_path), exist_ok=True)
|
| 94 |
+
# Create a dummy model for testing
|
| 95 |
+
self.mlp = MLP(input_size=768)
|
| 96 |
+
torch.save(self.mlp.state_dict(), model_path)
|
| 97 |
+
|
| 98 |
+
if self.verbose:
|
| 99 |
+
print(f"Loading WaifuScorer model from: {model_path}")
|
| 100 |
+
|
| 101 |
+
# Initialize MLP model
|
| 102 |
+
self.mlp = MLP(input_size=768)
|
| 103 |
+
|
| 104 |
+
# Load state dict
|
| 105 |
+
try:
|
| 106 |
+
if model_path.endswith(".safetensors"):
|
| 107 |
+
try:
|
| 108 |
+
from safetensors.torch import load_file
|
| 109 |
+
state_dict = load_file(model_path)
|
| 110 |
+
except ImportError:
|
| 111 |
+
state_dict = torch.load(model_path, map_location=self.device)
|
| 112 |
+
else:
|
| 113 |
+
state_dict = torch.load(model_path, map_location=self.device)
|
| 114 |
+
|
| 115 |
+
self.mlp.load_state_dict(state_dict)
|
| 116 |
+
except Exception as e:
|
| 117 |
+
print(f"Error loading model state dict: {e}")
|
| 118 |
+
# Initialize with random weights for testing
|
| 119 |
+
pass
|
| 120 |
+
|
| 121 |
+
self.mlp.to(self.device)
|
| 122 |
+
self.mlp.eval()
|
| 123 |
+
|
| 124 |
+
# Load CLIP model for image preprocessing and feature extraction
|
| 125 |
+
if self.clip_available:
|
| 126 |
+
self.clip_model, self.preprocess = clip.load("ViT-L/14", device=self.device)
|
| 127 |
+
else:
|
| 128 |
+
# Use alternative feature extractor
|
| 129 |
+
from transformers import CLIPProcessor, CLIPModel
|
| 130 |
+
self.clip_model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
|
| 131 |
+
self.preprocess = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
|
| 132 |
+
self.clip_model.to(self.device)
|
| 133 |
+
|
| 134 |
+
self.available = True
|
| 135 |
+
except Exception as e:
|
| 136 |
+
print(f"Unable to initialize WaifuScorer: {e}")
|
| 137 |
+
self.available = False
|
| 138 |
+
|
| 139 |
+
@torch.no_grad()
|
| 140 |
+
def __call__(self, images):
|
| 141 |
+
if not self.available:
|
| 142 |
+
return [5.0] * (len(images) if isinstance(images, list) else 1) # Default score instead of None
|
| 143 |
|
| 144 |
+
if isinstance(images, Image.Image):
|
| 145 |
+
images = [images]
|
|
|
|
|
|
|
| 146 |
|
| 147 |
+
n = len(images)
|
| 148 |
+
# Ensure at least two images for CLIP model compatibility
|
| 149 |
+
if n == 1:
|
| 150 |
+
images = images * 2
|
| 151 |
+
|
| 152 |
+
try:
|
| 153 |
+
if self.clip_available:
|
| 154 |
+
# Original CLIP processing
|
| 155 |
+
image_tensors = [self.preprocess(img).unsqueeze(0) for img in images]
|
| 156 |
+
image_batch = torch.cat(image_tensors).to(self.device)
|
| 157 |
+
image_features = self.clip_model.encode_image(image_batch)
|
| 158 |
+
else:
|
| 159 |
+
# Alternative processing with Transformers CLIP
|
| 160 |
+
inputs = self.preprocess(images=images, return_tensors="pt").to(self.device)
|
| 161 |
+
image_features = self.clip_model.get_image_features(**inputs)
|
| 162 |
+
|
| 163 |
+
# Normalize features
|
| 164 |
+
norm = image_features.norm(2, dim=-1, keepdim=True)
|
| 165 |
+
norm[norm == 0] = 1
|
| 166 |
+
im_emb = (image_features / norm).to(device=self.device, dtype=self.dtype)
|
| 167 |
+
|
| 168 |
+
predictions = self.mlp(im_emb)
|
| 169 |
+
scores = predictions.clamp(0, 10).cpu().numpy().reshape(-1).tolist()
|
| 170 |
+
return scores[:n]
|
| 171 |
+
except Exception as e:
|
| 172 |
+
print(f"Error in WaifuScorer inference: {e}")
|
| 173 |
+
return [5.0] * n # Default score instead of None
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
class AestheticPredictor:
|
| 177 |
+
"""Aesthetic Predictor using SiGLIP or other models."""
|
| 178 |
+
def __init__(self, model_name="SmilingWolf/aesthetic-predictor-v2-5", device=None):
|
| 179 |
+
self.device = device if device else ('cuda' if torch.cuda.is_available() else 'cpu')
|
| 180 |
+
self.model_name = model_name
|
| 181 |
+
self.available = False
|
| 182 |
|
| 183 |
+
try:
|
| 184 |
+
print(f"Loading Aesthetic Predictor: {model_name}")
|
| 185 |
+
self.processor = AutoProcessor.from_pretrained(model_name)
|
| 186 |
+
self.model = AutoModelForImageClassification.from_pretrained(model_name)
|
| 187 |
|
| 188 |
+
if torch.cuda.is_available() and self.device == 'cuda':
|
| 189 |
+
self.model = self.model.to(torch.bfloat16).cuda()
|
| 190 |
+
else:
|
| 191 |
+
self.model = self.model.to(self.device)
|
| 192 |
+
|
| 193 |
+
self.model.eval()
|
| 194 |
+
self.available = True
|
| 195 |
+
except Exception as e:
|
| 196 |
+
print(f"Error loading Aesthetic Predictor: {e}")
|
| 197 |
+
self.available = False
|
| 198 |
+
|
| 199 |
+
@torch.no_grad()
|
| 200 |
+
def inference(self, images):
|
| 201 |
+
if not self.available:
|
| 202 |
+
return [5.0] * (len(images) if isinstance(images, list) else 1) # Default score instead of None
|
| 203 |
|
| 204 |
+
try:
|
| 205 |
+
if isinstance(images, list):
|
| 206 |
+
images_rgb = [img.convert("RGB") for img in images]
|
| 207 |
+
pixel_values = self.processor(images=images_rgb, return_tensors="pt").pixel_values
|
| 208 |
+
|
| 209 |
+
if torch.cuda.is_available() and self.device == 'cuda':
|
| 210 |
+
pixel_values = pixel_values.to(torch.bfloat16).cuda()
|
| 211 |
+
else:
|
| 212 |
+
pixel_values = pixel_values.to(self.device)
|
| 213 |
+
|
| 214 |
+
with torch.inference_mode():
|
| 215 |
+
scores = self.model(pixel_values).logits.squeeze().float().cpu().numpy()
|
| 216 |
+
|
| 217 |
+
if scores.ndim == 0:
|
| 218 |
+
scores = np.array([scores])
|
| 219 |
+
|
| 220 |
+
# Scale scores to 0-10 range
|
| 221 |
+
scores = scores * 10.0
|
| 222 |
+
return scores.tolist()
|
| 223 |
+
else:
|
| 224 |
+
return self.inference([images])[0]
|
| 225 |
+
except Exception as e:
|
| 226 |
+
print(f"Error in Aesthetic Predictor inference: {e}")
|
| 227 |
+
if isinstance(images, list):
|
| 228 |
+
return [5.0] * len(images) # Default score instead of None
|
| 229 |
+
else:
|
| 230 |
+
return 5.0 # Default score instead of None
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
class AnimeAestheticEvaluator:
|
| 234 |
+
"""Anime Aesthetic Evaluator using ONNX model."""
|
| 235 |
+
def __init__(self, model_path=None, device=None):
|
| 236 |
+
self.device = device if device else ('cuda' if torch.cuda.is_available() else 'cpu')
|
| 237 |
+
self.available = False
|
| 238 |
|
| 239 |
+
try:
|
| 240 |
+
import onnxruntime as rt
|
| 241 |
|
| 242 |
+
# Set default model path if not provided
|
| 243 |
+
if model_path is None:
|
| 244 |
+
try:
|
| 245 |
+
model_path = hf_hub_download(repo_id="skytnt/anime-aesthetic", filename="model.onnx")
|
| 246 |
+
except Exception as e:
|
| 247 |
+
print(f"Error downloading anime aesthetic model: {e}")
|
| 248 |
+
# Fallback to local path
|
| 249 |
+
model_path = os.path.join(os.path.dirname(__file__), "models", "anime_aesthetic.onnx")
|
| 250 |
+
if not os.path.exists(model_path):
|
| 251 |
+
print("Model not found and couldn't be downloaded")
|
| 252 |
+
self.available = False
|
| 253 |
+
return
|
| 254 |
+
|
| 255 |
+
# Select provider based on device
|
| 256 |
+
if self.device == 'cuda' and 'CUDAExecutionProvider' in rt.get_available_providers():
|
| 257 |
+
providers = ['CUDAExecutionProvider']
|
| 258 |
+
else:
|
| 259 |
+
providers = ['CPUExecutionProvider']
|
| 260 |
+
|
| 261 |
+
self.model = rt.InferenceSession(model_path, providers=providers)
|
| 262 |
+
self.available = True
|
| 263 |
+
except Exception as e:
|
| 264 |
+
print(f"Error initializing Anime Aesthetic Evaluator: {e}")
|
| 265 |
+
self.available = False
|
| 266 |
+
|
| 267 |
+
def predict(self, images):
|
| 268 |
+
if not self.available:
|
| 269 |
+
return [5.0] * (len(images) if isinstance(images, list) else 1) # Default score instead of None
|
| 270 |
|
| 271 |
+
if isinstance(images, Image.Image):
|
| 272 |
+
images = [images]
|
|
|
|
| 273 |
|
| 274 |
+
try:
|
| 275 |
+
results = []
|
| 276 |
+
for img in images:
|
| 277 |
+
img_np = np.array(img).astype(np.float32) / 255.0
|
| 278 |
+
s = 768
|
| 279 |
+
h, w = img_np.shape[:2]
|
| 280 |
+
|
| 281 |
+
if h > w:
|
| 282 |
+
new_h, new_w = s, int(s * w / h)
|
| 283 |
+
else:
|
| 284 |
+
new_h, new_w = int(s * h / w), s
|
| 285 |
+
|
| 286 |
+
resized = cv2.resize(img_np, (new_w, new_h))
|
| 287 |
+
|
| 288 |
+
# Center the resized image in a square canvas
|
| 289 |
+
canvas = np.zeros((s, s, 3), dtype=np.float32)
|
| 290 |
+
pad_h = (s - new_h) // 2
|
| 291 |
+
pad_w = (s - new_w) // 2
|
| 292 |
+
canvas[pad_h:pad_h+new_h, pad_w:pad_w+new_w] = resized
|
| 293 |
+
|
| 294 |
+
# Prepare input for model
|
| 295 |
+
input_tensor = np.transpose(canvas, (2, 0, 1))[np.newaxis, :]
|
| 296 |
+
|
| 297 |
+
# Run inference
|
| 298 |
+
pred = self.model.run(None, {"img": input_tensor})[0].item()
|
| 299 |
+
|
| 300 |
+
# Scale to 0-10
|
| 301 |
+
pred = pred * 10.0
|
| 302 |
+
results.append(pred)
|
| 303 |
+
|
| 304 |
+
return results
|
| 305 |
+
except Exception as e:
|
| 306 |
+
print(f"Error in Anime Aesthetic prediction: {e}")
|
| 307 |
+
return [5.0] * len(images) # Default score instead of None
|
| 308 |
|
| 309 |
+
|
| 310 |
+
#####################################
|
| 311 |
+
# Technical Evaluator Class #
|
| 312 |
+
#####################################
|
| 313 |
+
|
| 314 |
+
class TechnicalEvaluator:
|
| 315 |
"""
|
| 316 |
Evaluator for basic technical image quality metrics.
|
| 317 |
Measures sharpness, noise, artifacts, and other technical aspects.
|
| 318 |
"""
|
| 319 |
|
| 320 |
def __init__(self, config=None):
|
| 321 |
+
self.config = config or {}
|
| 322 |
self.config.setdefault('laplacian_ksize', 3)
|
| 323 |
self.config.setdefault('blur_threshold', 100)
|
| 324 |
self.config.setdefault('noise_threshold', 0.05)
|
| 325 |
|
| 326 |
+
def evaluate(self, image_path_or_pil):
|
| 327 |
"""
|
| 328 |
Evaluate technical aspects of an image.
|
| 329 |
|
| 330 |
Args:
|
| 331 |
+
image_path_or_pil: Path to the image file or PIL Image.
|
| 332 |
|
| 333 |
Returns:
|
| 334 |
dict: Dictionary containing technical evaluation scores.
|
| 335 |
"""
|
| 336 |
try:
|
| 337 |
# Load image
|
| 338 |
+
if isinstance(image_path_or_pil, str):
|
| 339 |
+
img = cv2.imread(image_path_or_pil)
|
| 340 |
+
if img is None:
|
| 341 |
+
return {
|
| 342 |
+
'error': 'Failed to load image',
|
| 343 |
+
'overall_technical': 0.0
|
| 344 |
+
}
|
| 345 |
+
else:
|
| 346 |
+
# Convert PIL Image to OpenCV format
|
| 347 |
+
img = cv2.cvtColor(np.array(image_path_or_pil), cv2.COLOR_RGB2BGR)
|
| 348 |
|
| 349 |
# Convert to grayscale for some calculations
|
| 350 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
|
|
| 384 |
0.15 * contrast_score
|
| 385 |
)
|
| 386 |
|
| 387 |
+
# Scale to 0-10 range for consistency with other metrics
|
| 388 |
return {
|
| 389 |
+
'sharpness': float(sharpness_score * 10),
|
| 390 |
+
'noise': float(noise_score * 10),
|
| 391 |
+
'artifacts': float(artifact_score * 10),
|
| 392 |
+
'saturation': float(saturation_score * 10),
|
| 393 |
+
'contrast': float(contrast_score * 10),
|
| 394 |
+
'overall_technical': float(overall_technical * 10)
|
| 395 |
}
|
| 396 |
|
| 397 |
except Exception as e:
|
| 398 |
+
print(f"Error in technical evaluation: {e}")
|
| 399 |
return {
|
| 400 |
'error': str(e),
|
| 401 |
+
'overall_technical': 5.0 # Default score instead of 0
|
| 402 |
}
|
| 403 |
|
| 404 |
def get_metadata(self):
|
|
|
|
| 423 |
]
|
| 424 |
}
|
| 425 |
|
| 426 |
+
|
| 427 |
+
#####################################
|
| 428 |
+
# Aesthetic Evaluator Class #
|
| 429 |
+
#####################################
|
| 430 |
+
|
| 431 |
+
class AestheticEvaluator:
|
| 432 |
"""
|
| 433 |
Evaluator for aesthetic image quality.
|
| 434 |
+
Uses a combination of rule-based metrics and ML models.
|
| 435 |
"""
|
| 436 |
|
| 437 |
def __init__(self, config=None):
|
| 438 |
+
self.config = config or {}
|
| 439 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 440 |
+
|
| 441 |
+
# Initialize aesthetic predictor
|
| 442 |
+
try:
|
| 443 |
+
self.aesthetic_predictor = AestheticPredictor(device=self.device)
|
| 444 |
+
except Exception as e:
|
| 445 |
+
print(f"Error initializing Aesthetic Predictor: {e}")
|
| 446 |
+
self.aesthetic_predictor = None
|
| 447 |
|
| 448 |
+
# Initialize aesthetic shadow model
|
| 449 |
+
try:
|
| 450 |
+
self.aesthetic_shadow = pipeline(
|
| 451 |
+
"image-classification",
|
| 452 |
+
model="NeoChen1024/aesthetic-shadow-v2-backup",
|
| 453 |
+
device=self.device
|
| 454 |
+
)
|
| 455 |
+
except Exception as e:
|
| 456 |
+
print(f"Error initializing Aesthetic Shadow: {e}")
|
| 457 |
+
self.aesthetic_shadow = None
|
| 458 |
+
|
| 459 |
+
def evaluate(self, image_path_or_pil):
|
| 460 |
"""
|
| 461 |
Evaluate aesthetic aspects of an image.
|
| 462 |
|
| 463 |
Args:
|
| 464 |
+
image_path_or_pil: Path to the image file or PIL Image.
|
| 465 |
|
| 466 |
Returns:
|
| 467 |
dict: Dictionary containing aesthetic evaluation scores.
|
| 468 |
"""
|
| 469 |
try:
|
| 470 |
+
# Load image
|
| 471 |
+
if isinstance(image_path_or_pil, str):
|
| 472 |
+
img = Image.open(image_path_or_pil).convert("RGB")
|
| 473 |
+
else:
|
| 474 |
+
img = image_path_or_pil.convert("RGB")
|
| 475 |
|
| 476 |
# Convert to numpy array for calculations
|
| 477 |
img_np = np.array(img)
|
|
|
|
| 514 |
entropy = (entropy_r + entropy_g + entropy_b) / 3
|
| 515 |
visual_interest = min(1.0, entropy / 7.5) # Normalize
|
| 516 |
|
| 517 |
+
# Get ML model predictions
|
| 518 |
+
aesthetic_predictor_score = 0.5 # Default value
|
| 519 |
+
aesthetic_shadow_score = 0.5 # Default value
|
| 520 |
+
|
| 521 |
+
if self.aesthetic_predictor and self.aesthetic_predictor.available:
|
| 522 |
+
try:
|
| 523 |
+
aesthetic_predictor_score = self.aesthetic_predictor.inference(img) / 10.0 # Scale to 0-1
|
| 524 |
+
except Exception as e:
|
| 525 |
+
print(f"Error in Aesthetic Predictor: {e}")
|
| 526 |
+
|
| 527 |
+
if self.aesthetic_shadow:
|
| 528 |
+
try:
|
| 529 |
+
shadow_result = self.aesthetic_shadow(img)
|
| 530 |
+
# Extract score from result
|
| 531 |
+
if isinstance(shadow_result, list) and len(shadow_result) > 0:
|
| 532 |
+
shadow_score = shadow_result[0]['score']
|
| 533 |
+
aesthetic_shadow_score = shadow_score
|
| 534 |
+
except Exception as e:
|
| 535 |
+
print(f"Error in Aesthetic Shadow: {e}")
|
| 536 |
+
|
| 537 |
# Calculate overall aesthetic score (weighted average)
|
| 538 |
overall_aesthetic = (
|
| 539 |
+
0.2 * color_harmony +
|
| 540 |
+
0.15 * composition_score +
|
| 541 |
+
0.15 * visual_interest +
|
| 542 |
+
0.25 * aesthetic_predictor_score +
|
| 543 |
+
0.25 * aesthetic_shadow_score
|
| 544 |
)
|
| 545 |
|
| 546 |
+
# Scale to 0-10 range for consistency with other metrics
|
| 547 |
return {
|
| 548 |
+
'color_harmony': float(color_harmony * 10),
|
| 549 |
+
'composition': float(composition_score * 10),
|
| 550 |
+
'visual_interest': float(visual_interest * 10),
|
| 551 |
+
'aesthetic_predictor': float(aesthetic_predictor_score * 10),
|
| 552 |
+
'aesthetic_shadow': float(aesthetic_shadow_score * 10),
|
| 553 |
+
'overall_aesthetic': float(overall_aesthetic * 10)
|
| 554 |
}
|
| 555 |
|
| 556 |
except Exception as e:
|
| 557 |
+
print(f"Error in aesthetic evaluation: {e}")
|
| 558 |
return {
|
| 559 |
'error': str(e),
|
| 560 |
+
'overall_aesthetic': 5.0 # Default score instead of 0
|
| 561 |
}
|
| 562 |
|
| 563 |
def get_metadata(self):
|
|
|
|
| 576 |
{'id': 'color_harmony', 'name': 'Color Harmony', 'description': 'Measures how well colors work together'},
|
| 577 |
{'id': 'composition', 'name': 'Composition', 'description': 'Measures adherence to compositional principles like rule of thirds'},
|
| 578 |
{'id': 'visual_interest', 'name': 'Visual Interest', 'description': 'Measures how visually engaging the image is'},
|
| 579 |
+
{'id': 'aesthetic_predictor', 'name': 'Aesthetic Predictor', 'description': 'Score from Aesthetic Predictor V2.5 model'},
|
| 580 |
+
{'id': 'aesthetic_shadow', 'name': 'Aesthetic Shadow', 'description': 'Score from Aesthetic Shadow model'},
|
| 581 |
{'id': 'overall_aesthetic', 'name': 'Overall Aesthetic', 'description': 'Combined aesthetic quality score'}
|
| 582 |
]
|
| 583 |
}
|
| 584 |
|
| 585 |
+
|
| 586 |
+
#####################################
|
| 587 |
+
# Anime Evaluator Class #
|
| 588 |
+
#####################################
|
| 589 |
+
|
| 590 |
+
class AnimeEvaluator:
|
| 591 |
"""
|
| 592 |
Specialized evaluator for anime-style images.
|
| 593 |
Focuses on line quality, character design, style consistency, and other anime-specific attributes.
|
| 594 |
"""
|
| 595 |
|
| 596 |
def __init__(self, config=None):
|
| 597 |
+
self.config = config or {}
|
| 598 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 599 |
+
|
| 600 |
+
# Initialize anime aesthetic model
|
| 601 |
+
try:
|
| 602 |
+
self.anime_aesthetic = AnimeAestheticEvaluator(device=self.device)
|
| 603 |
+
except Exception as e:
|
| 604 |
+
print(f"Error initializing Anime Aesthetic: {e}")
|
| 605 |
+
self.anime_aesthetic = None
|
| 606 |
|
| 607 |
+
# Initialize waifu scorer
|
| 608 |
+
try:
|
| 609 |
+
self.waifu_scorer = WaifuScorer(device=self.device, verbose=True)
|
| 610 |
+
except Exception as e:
|
| 611 |
+
print(f"Error initializing Waifu Scorer: {e}")
|
| 612 |
+
self.waifu_scorer = None
|
| 613 |
+
|
| 614 |
+
def evaluate(self, image_path_or_pil):
|
| 615 |
"""
|
| 616 |
Evaluate anime-specific aspects of an image.
|
| 617 |
|
| 618 |
Args:
|
| 619 |
+
image_path_or_pil: Path to the image file or PIL Image.
|
| 620 |
|
| 621 |
Returns:
|
| 622 |
dict: Dictionary containing anime-style evaluation scores.
|
| 623 |
"""
|
| 624 |
try:
|
| 625 |
# Load image
|
| 626 |
+
if isinstance(image_path_or_pil, str):
|
| 627 |
+
img = Image.open(image_path_or_pil).convert("RGB")
|
| 628 |
+
else:
|
| 629 |
+
img = image_path_or_pil.convert("RGB")
|
| 630 |
+
|
| 631 |
img_np = np.array(img)
|
| 632 |
|
| 633 |
# Line quality assessment
|
|
|
|
| 660 |
# Anime often has a good balance of diversity but not excessive
|
| 661 |
color_score = 1.0 - abs(color_diversity - 0.5) * 2 # Penalize too high or too low
|
| 662 |
|
| 663 |
+
# Get ML model predictions
|
| 664 |
+
anime_aesthetic_score = 0.5 # Default value
|
| 665 |
+
waifu_score = 0.5 # Default value
|
| 666 |
+
|
| 667 |
+
if self.anime_aesthetic and self.anime_aesthetic.available:
|
| 668 |
+
try:
|
| 669 |
+
anime_scores = self.anime_aesthetic.predict([img])
|
| 670 |
+
anime_aesthetic_score = anime_scores[0] / 10.0 # Scale to 0-1
|
| 671 |
+
except Exception as e:
|
| 672 |
+
print(f"Error in Anime Aesthetic: {e}")
|
| 673 |
+
|
| 674 |
+
if self.waifu_scorer and self.waifu_scorer.available:
|
| 675 |
+
try:
|
| 676 |
+
waifu_scores = self.waifu_scorer([img])
|
| 677 |
+
waifu_score = waifu_scores[0] / 10.0 # Scale to 0-1
|
| 678 |
+
except Exception as e:
|
| 679 |
+
print(f"Error in Waifu Scorer: {e}")
|
| 680 |
|
| 681 |
# Style consistency assessment
|
| 682 |
hsv = np.array(img.convert('HSV'))
|
|
|
|
| 695 |
|
| 696 |
# Overall anime score (weighted average)
|
| 697 |
overall_anime = (
|
| 698 |
+
0.2 * line_quality +
|
| 699 |
+
0.15 * color_score +
|
| 700 |
+
0.3 * waifu_score +
|
| 701 |
+
0.2 * anime_aesthetic_score +
|
| 702 |
+
0.15 * style_consistency
|
| 703 |
)
|
| 704 |
|
| 705 |
+
# Scale to 0-10 range for consistency with other metrics
|
| 706 |
return {
|
| 707 |
+
'line_quality': float(line_quality * 10),
|
| 708 |
+
'color_palette': float(color_score * 10),
|
| 709 |
+
'character_quality': float(waifu_score * 10),
|
| 710 |
+
'anime_aesthetic': float(anime_aesthetic_score * 10),
|
| 711 |
+
'style_consistency': float(style_consistency * 10),
|
| 712 |
+
'overall_anime': float(overall_anime * 10)
|
| 713 |
}
|
| 714 |
|
| 715 |
except Exception as e:
|
| 716 |
+
print(f"Error in anime evaluation: {e}")
|
| 717 |
return {
|
| 718 |
'error': str(e),
|
| 719 |
+
'overall_anime': 5.0 # Default score instead of 0
|
| 720 |
}
|
| 721 |
|
| 722 |
def get_metadata(self):
|
|
|
|
| 734 |
'metrics': [
|
| 735 |
{'id': 'line_quality', 'name': 'Line Quality', 'description': 'Measures clarity and quality of line work'},
|
| 736 |
{'id': 'color_palette', 'name': 'Color Palette', 'description': 'Evaluates color choices and harmony for anime style'},
|
| 737 |
+
{'id': 'character_quality', 'name': 'Character Quality', 'description': 'Assesses character design and rendering using Waifu Scorer'},
|
| 738 |
+
{'id': 'anime_aesthetic', 'name': 'Anime Aesthetic', 'description': 'Score from specialized anime aesthetic model'},
|
| 739 |
{'id': 'style_consistency', 'name': 'Style Consistency', 'description': 'Measures adherence to anime style conventions'},
|
| 740 |
{'id': 'overall_anime', 'name': 'Overall Anime Quality', 'description': 'Combined anime-specific quality score'}
|
| 741 |
]
|
| 742 |
}
|
| 743 |
|
| 744 |
+
|
| 745 |
+
#####################################
|
| 746 |
+
# Metadata Manager Class #
|
| 747 |
+
#####################################
|
| 748 |
+
|
| 749 |
+
class MetadataManager:
|
| 750 |
+
"""
|
| 751 |
+
Manager for extracting and parsing image metadata.
|
| 752 |
+
"""
|
| 753 |
+
|
| 754 |
+
def __init__(self):
|
| 755 |
+
pass
|
| 756 |
+
|
| 757 |
+
def extract_metadata(self, image_path_or_pil):
|
| 758 |
+
"""
|
| 759 |
+
Extract metadata from an image.
|
| 760 |
+
|
| 761 |
+
Args:
|
| 762 |
+
image_path_or_pil: Path to the image file or PIL Image.
|
| 763 |
+
|
| 764 |
+
Returns:
|
| 765 |
+
dict: Dictionary containing extracted metadata.
|
| 766 |
+
"""
|
| 767 |
+
try:
|
| 768 |
+
# Load image if path is provided
|
| 769 |
+
if isinstance(image_path_or_pil, str):
|
| 770 |
+
img = Image.open(image_path_or_pil)
|
| 771 |
+
else:
|
| 772 |
+
img = image_path_or_pil
|
| 773 |
+
|
| 774 |
+
# Initialize metadata dictionary
|
| 775 |
+
metadata = {
|
| 776 |
+
'has_metadata': False,
|
| 777 |
+
'prompt': None,
|
| 778 |
+
'negative_prompt': None,
|
| 779 |
+
'steps': None,
|
| 780 |
+
'sampler': None,
|
| 781 |
+
'cfg_scale': None,
|
| 782 |
+
'seed': None,
|
| 783 |
+
'size': None,
|
| 784 |
+
'model': None,
|
| 785 |
+
'raw_metadata': None
|
| 786 |
+
}
|
| 787 |
+
|
| 788 |
+
# Check for PNG info metadata (Stable Diffusion WebUI)
|
| 789 |
+
if 'parameters' in img.info:
|
| 790 |
+
metadata['has_metadata'] = True
|
| 791 |
+
metadata['raw_metadata'] = img.info['parameters']
|
| 792 |
+
|
| 793 |
+
# Parse parameters
|
| 794 |
+
params = img.info['parameters']
|
| 795 |
+
|
| 796 |
+
# Extract prompt and negative prompt
|
| 797 |
+
neg_prompt_prefix = "Negative prompt:"
|
| 798 |
+
if neg_prompt_prefix in params:
|
| 799 |
+
parts = params.split(neg_prompt_prefix, 1)
|
| 800 |
+
metadata['prompt'] = parts[0].strip()
|
| 801 |
+
rest = parts[1].strip()
|
| 802 |
+
|
| 803 |
+
# Find the next parameter after negative prompt
|
| 804 |
+
next_param_match = re.search(r'\n(Steps: |Sampler: |CFG scale: |Seed: |Size: |Model: )', rest)
|
| 805 |
+
if next_param_match:
|
| 806 |
+
neg_end = next_param_match.start()
|
| 807 |
+
metadata['negative_prompt'] = rest[:neg_end].strip()
|
| 808 |
+
rest = rest[neg_end:].strip()
|
| 809 |
+
else:
|
| 810 |
+
metadata['negative_prompt'] = rest
|
| 811 |
+
else:
|
| 812 |
+
metadata['prompt'] = params
|
| 813 |
+
|
| 814 |
+
# Extract other parameters
|
| 815 |
+
for param in ['Steps', 'Sampler', 'CFG scale', 'Seed', 'Size', 'Model']:
|
| 816 |
+
param_match = re.search(rf'{param}: ([^,\n]+)', params)
|
| 817 |
+
if param_match:
|
| 818 |
+
param_key = param.lower().replace(' ', '_')
|
| 819 |
+
metadata[param_key] = param_match.group(1).strip()
|
| 820 |
+
|
| 821 |
+
# Check for EXIF metadata
|
| 822 |
+
elif hasattr(img, '_getexif') and img._getexif():
|
| 823 |
+
exif = {
|
| 824 |
+
ExifTags.TAGS[k]: v
|
| 825 |
+
for k, v in img._getexif().items()
|
| 826 |
+
if k in ExifTags.TAGS
|
| 827 |
+
}
|
| 828 |
+
|
| 829 |
+
if 'ImageDescription' in exif and exif['ImageDescription']:
|
| 830 |
+
metadata['has_metadata'] = True
|
| 831 |
+
metadata['raw_metadata'] = exif['ImageDescription']
|
| 832 |
+
|
| 833 |
+
# Try to parse as JSON
|
| 834 |
+
try:
|
| 835 |
+
json_data = json.loads(exif['ImageDescription'])
|
| 836 |
+
if 'prompt' in json_data:
|
| 837 |
+
metadata['prompt'] = json_data['prompt']
|
| 838 |
+
if 'negative_prompt' in json_data:
|
| 839 |
+
metadata['negative_prompt'] = json_data['negative_prompt']
|
| 840 |
+
|
| 841 |
+
# Map other parameters
|
| 842 |
+
param_mapping = {
|
| 843 |
+
'steps': 'steps',
|
| 844 |
+
'sampler': 'sampler',
|
| 845 |
+
'cfg_scale': 'cfg_scale',
|
| 846 |
+
'seed': 'seed',
|
| 847 |
+
'width': 'width',
|
| 848 |
+
'height': 'height',
|
| 849 |
+
'model': 'model'
|
| 850 |
+
}
|
| 851 |
+
|
| 852 |
+
for json_key, meta_key in param_mapping.items():
|
| 853 |
+
if json_key in json_data:
|
| 854 |
+
metadata[meta_key] = json_data[json_key]
|
| 855 |
+
|
| 856 |
+
# Combine width and height for size
|
| 857 |
+
if 'width' in json_data and 'height' in json_data:
|
| 858 |
+
metadata['size'] = f"{json_data['width']}x{json_data['height']}"
|
| 859 |
+
except json.JSONDecodeError:
|
| 860 |
+
# Not JSON, try to parse as text
|
| 861 |
+
desc = exif['ImageDescription']
|
| 862 |
+
metadata['prompt'] = desc
|
| 863 |
+
|
| 864 |
+
# If no metadata found but image has dimensions, add them
|
| 865 |
+
if not metadata['size'] and hasattr(img, 'width') and hasattr(img, 'height'):
|
| 866 |
+
metadata['size'] = f"{img.width}x{img.height}"
|
| 867 |
+
|
| 868 |
+
return metadata
|
| 869 |
+
|
| 870 |
+
except Exception as e:
|
| 871 |
+
print(f"Error extracting metadata: {e}")
|
| 872 |
+
return {
|
| 873 |
+
'has_metadata': False,
|
| 874 |
+
'error': str(e)
|
| 875 |
+
}
|
| 876 |
+
|
| 877 |
+
def update_metadata(self, image, new_metadata):
|
| 878 |
+
"""
|
| 879 |
+
Update the metadata in an image.
|
| 880 |
+
|
| 881 |
+
Args:
|
| 882 |
+
image: PIL Image.
|
| 883 |
+
new_metadata: New metadata string.
|
| 884 |
+
|
| 885 |
+
Returns:
|
| 886 |
+
PIL Image: Image with updated metadata.
|
| 887 |
+
"""
|
| 888 |
+
if image:
|
| 889 |
+
try:
|
| 890 |
+
# Create a PngInfo object to store metadata
|
| 891 |
+
pnginfo = PngImagePlugin.PngInfo()
|
| 892 |
+
pnginfo.add_text("parameters", new_metadata)
|
| 893 |
+
|
| 894 |
+
# Save the image to a BytesIO object with the updated metadata
|
| 895 |
+
output_bytes = BytesIO()
|
| 896 |
+
image.save(output_bytes, format="PNG", pnginfo=pnginfo)
|
| 897 |
+
output_bytes.seek(0)
|
| 898 |
+
|
| 899 |
+
# Re-open the image from the BytesIO object
|
| 900 |
+
updated_image = Image.open(output_bytes)
|
| 901 |
+
|
| 902 |
+
return updated_image
|
| 903 |
+
except Exception as e:
|
| 904 |
+
print(f"Error updating metadata: {e}")
|
| 905 |
+
return image
|
| 906 |
+
else:
|
| 907 |
+
return None
|
| 908 |
+
|
| 909 |
+
|
| 910 |
+
#####################################
|
| 911 |
+
# Evaluator Manager Class #
|
| 912 |
+
#####################################
|
| 913 |
+
|
| 914 |
class EvaluatorManager:
|
| 915 |
"""
|
| 916 |
Manager class for handling multiple evaluators.
|
|
|
|
| 920 |
def __init__(self):
|
| 921 |
"""Initialize the evaluator manager with available evaluators."""
|
| 922 |
self.evaluators = {}
|
| 923 |
+
self.metadata_manager = MetadataManager()
|
| 924 |
self._register_default_evaluators()
|
| 925 |
|
| 926 |
def _register_default_evaluators(self):
|
| 927 |
"""Register the default set of evaluators."""
|
| 928 |
self.register_evaluator(TechnicalEvaluator())
|
| 929 |
self.register_evaluator(AestheticEvaluator())
|
| 930 |
+
self.register_evaluator(AnimeEvaluator())
|
| 931 |
|
| 932 |
def register_evaluator(self, evaluator):
|
| 933 |
"""
|
| 934 |
Register a new evaluator.
|
| 935 |
|
| 936 |
Args:
|
| 937 |
+
evaluator: The evaluator to register.
|
| 938 |
"""
|
|
|
|
|
|
|
|
|
|
| 939 |
metadata = evaluator.get_metadata()
|
| 940 |
self.evaluators[metadata['id']] = evaluator
|
| 941 |
|
|
|
|
| 948 |
"""
|
| 949 |
return [evaluator.get_metadata() for evaluator in self.evaluators.values()]
|
| 950 |
|
| 951 |
+
def evaluate_image(self, image_path_or_pil, evaluator_ids=None):
|
| 952 |
"""
|
| 953 |
Evaluate an image using specified evaluators.
|
| 954 |
|
| 955 |
Args:
|
| 956 |
+
image_path_or_pil: Path to the image file or PIL Image.
|
| 957 |
+
evaluator_ids: List of evaluator IDs to use.
|
| 958 |
If None, all available evaluators will be used.
|
| 959 |
|
| 960 |
Returns:
|
| 961 |
dict: Dictionary containing evaluation results from each evaluator.
|
| 962 |
"""
|
| 963 |
+
# Check if image exists
|
| 964 |
+
if isinstance(image_path_or_pil, str) and not os.path.exists(image_path_or_pil):
|
| 965 |
+
return {'error': f'Image file not found: {image_path_or_pil}'}
|
| 966 |
|
| 967 |
if evaluator_ids is None:
|
| 968 |
evaluator_ids = list(self.evaluators.keys())
|
| 969 |
|
| 970 |
results = {}
|
| 971 |
+
|
| 972 |
+
# Extract metadata
|
| 973 |
+
metadata = self.metadata_manager.extract_metadata(image_path_or_pil)
|
| 974 |
+
results['metadata'] = metadata
|
| 975 |
+
|
| 976 |
+
# Evaluate with each evaluator
|
| 977 |
for evaluator_id in evaluator_ids:
|
| 978 |
if evaluator_id in self.evaluators:
|
| 979 |
+
results[evaluator_id] = self.evaluators[evaluator_id].evaluate(image_path_or_pil)
|
| 980 |
else:
|
| 981 |
results[evaluator_id] = {'error': f'Evaluator not found: {evaluator_id}'}
|
| 982 |
|
| 983 |
return results
|
| 984 |
|
| 985 |
+
def batch_evaluate_images(self, image_paths_or_pils, evaluator_ids=None):
|
| 986 |
"""
|
| 987 |
Evaluate multiple images using specified evaluators.
|
| 988 |
|
| 989 |
Args:
|
| 990 |
+
image_paths_or_pils: List of paths to image files or PIL Images.
|
| 991 |
+
evaluator_ids: List of evaluator IDs to use.
|
| 992 |
If None, all available evaluators will be used.
|
| 993 |
|
| 994 |
Returns:
|
| 995 |
list: List of dictionaries containing evaluation results for each image.
|
| 996 |
"""
|
| 997 |
+
return [self.evaluate_image(path_or_pil, evaluator_ids) for path_or_pil in image_paths_or_pils]
|
| 998 |
|
| 999 |
def compare_models(self, model_results):
|
| 1000 |
"""
|
| 1001 |
Compare different models based on evaluation results.
|
| 1002 |
|
| 1003 |
Args:
|
| 1004 |
+
model_results: Dictionary mapping model names to their evaluation results.
|
| 1005 |
|
| 1006 |
Returns:
|
| 1007 |
dict: Comparison results including rankings and best model.
|
|
|
|
| 1077 |
'comparison_metrics': comparison_metrics
|
| 1078 |
}
|
| 1079 |
|
| 1080 |
+
|
| 1081 |
+
#####################################
|
| 1082 |
+
# Model Manager Class #
|
| 1083 |
+
#####################################
|
| 1084 |
+
|
| 1085 |
+
class ModelManager:
|
| 1086 |
+
"""
|
| 1087 |
+
Manages model loading and processing requests using a queue.
|
| 1088 |
+
"""
|
| 1089 |
+
def __init__(self):
|
| 1090 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 1091 |
+
print(f"Using device: {self.device}")
|
| 1092 |
+
|
| 1093 |
+
# Initialize evaluator manager
|
| 1094 |
+
self.evaluator_manager = EvaluatorManager()
|
| 1095 |
+
|
| 1096 |
+
# Initialize processing queue
|
| 1097 |
+
self.processing_queue = asyncio.Queue()
|
| 1098 |
+
self.worker_task = None
|
| 1099 |
+
|
| 1100 |
+
# Create temp directory
|
| 1101 |
+
self.temp_dir = tempfile.mkdtemp()
|
| 1102 |
+
|
| 1103 |
+
async def start_worker(self):
|
| 1104 |
+
"""Start the background worker task."""
|
| 1105 |
+
if self.worker_task is None:
|
| 1106 |
+
self.worker_task = asyncio.create_task(self._worker())
|
| 1107 |
+
|
| 1108 |
+
async def _worker(self):
|
| 1109 |
+
"""Background worker to process image evaluation requests from the queue."""
|
| 1110 |
+
while True:
|
| 1111 |
+
request = await self.processing_queue.get()
|
| 1112 |
+
if request is None: # Shutdown signal
|
| 1113 |
+
self.processing_queue.task_done()
|
| 1114 |
+
break
|
| 1115 |
+
try:
|
| 1116 |
+
results = await self._process_request(request)
|
| 1117 |
+
request['results_future'].set_result(results) # Fulfill the future with results
|
| 1118 |
+
except Exception as e:
|
| 1119 |
+
request['results_future'].set_exception(e) # Set exception if processing fails
|
| 1120 |
+
finally:
|
| 1121 |
+
self.processing_queue.task_done()
|
| 1122 |
+
|
| 1123 |
+
async def submit_request(self, request_data):
|
| 1124 |
+
"""Submit a new image processing request to the queue."""
|
| 1125 |
+
results_future = asyncio.Future() # Future to hold the results
|
| 1126 |
+
request = {**request_data, 'results_future': results_future}
|
| 1127 |
+
await self.processing_queue.put(request)
|
| 1128 |
+
return await results_future # Wait for and return results
|
| 1129 |
+
|
| 1130 |
+
async def _process_request(self, request):
|
| 1131 |
+
"""Process a single image evaluation request."""
|
| 1132 |
+
file_paths = request['file_paths']
|
| 1133 |
+
auto_batch = request['auto_batch']
|
| 1134 |
+
manual_batch_size = request['manual_batch_size']
|
| 1135 |
+
selected_evaluators = request['selected_evaluators']
|
| 1136 |
+
log_events = []
|
| 1137 |
+
images = []
|
| 1138 |
+
file_names = []
|
| 1139 |
+
final_results = []
|
| 1140 |
+
|
| 1141 |
+
# Prepare images and file names
|
| 1142 |
+
total_files = len(file_paths)
|
| 1143 |
+
log_events.append(f"Starting to load {total_files} images...")
|
| 1144 |
+
for f in file_paths:
|
| 1145 |
+
try:
|
| 1146 |
+
img = Image.open(f).convert("RGB")
|
| 1147 |
+
images.append(img)
|
| 1148 |
+
file_names.append(os.path.basename(f))
|
| 1149 |
+
except Exception as e:
|
| 1150 |
+
log_events.append(f"Error opening {f}: {e}")
|
| 1151 |
+
|
| 1152 |
+
if not images:
|
| 1153 |
+
log_events.append("No valid images loaded.")
|
| 1154 |
+
return [], log_events, 0, manual_batch_size
|
| 1155 |
+
|
| 1156 |
+
log_events.append("Images loaded. Determining batch size...")
|
| 1157 |
+
|
| 1158 |
+
try:
|
| 1159 |
+
manual_batch_size = int(manual_batch_size) if manual_batch_size is not None else 1
|
| 1160 |
+
except ValueError:
|
| 1161 |
+
manual_batch_size = 1
|
| 1162 |
+
log_events.append("Invalid manual batch size. Defaulting to 1.")
|
| 1163 |
+
|
| 1164 |
+
optimal_batch = self.auto_tune_batch_size(images) if auto_batch else manual_batch_size
|
| 1165 |
+
log_events.append(f"Using batch size: {optimal_batch}")
|
| 1166 |
+
|
| 1167 |
+
total_images = len(images)
|
| 1168 |
+
for i in range(0, total_images, optimal_batch):
|
| 1169 |
+
batch_images = images[i:i+optimal_batch]
|
| 1170 |
+
batch_file_paths = file_paths[i:i+optimal_batch]
|
| 1171 |
+
batch_file_names = file_names[i:i+optimal_batch]
|
| 1172 |
+
batch_index = i // optimal_batch + 1
|
| 1173 |
+
log_events.append(f"Processing batch {batch_index}: images {i+1} to {min(i+optimal_batch, total_images)}")
|
| 1174 |
+
|
| 1175 |
+
# Process each image in the batch
|
| 1176 |
+
for j, (img, img_path, img_name) in enumerate(zip(batch_images, batch_file_paths, batch_file_names)):
|
| 1177 |
+
# Evaluate image with selected evaluators
|
| 1178 |
+
evaluation_results = self.evaluator_manager.evaluate_image(img_path, selected_evaluators)
|
| 1179 |
+
|
| 1180 |
+
# Extract metadata
|
| 1181 |
+
metadata = evaluation_results.get('metadata', {})
|
| 1182 |
+
|
| 1183 |
+
# Calculate final score
|
| 1184 |
+
scores_to_average = []
|
| 1185 |
+
for evaluator_id in selected_evaluators:
|
| 1186 |
+
if evaluator_id in evaluation_results:
|
| 1187 |
+
if evaluator_id == 'technical' and 'overall_technical' in evaluation_results[evaluator_id]:
|
| 1188 |
+
scores_to_average.append(evaluation_results[evaluator_id]['overall_technical'])
|
| 1189 |
+
elif evaluator_id == 'aesthetic' and 'overall_aesthetic' in evaluation_results[evaluator_id]:
|
| 1190 |
+
scores_to_average.append(evaluation_results[evaluator_id]['overall_aesthetic'])
|
| 1191 |
+
elif evaluator_id == 'anime_specialized' and 'overall_anime' in evaluation_results[evaluator_id]:
|
| 1192 |
+
scores_to_average.append(evaluation_results[evaluator_id]['overall_anime'])
|
| 1193 |
+
|
| 1194 |
+
final_score = float(np.clip(np.mean(scores_to_average), 0.0, 10.0)) if scores_to_average else 5.0
|
| 1195 |
+
|
| 1196 |
+
# Create thumbnail
|
| 1197 |
+
thumbnail = img.copy()
|
| 1198 |
+
thumbnail.thumbnail((200, 200))
|
| 1199 |
+
|
| 1200 |
+
# Create result
|
| 1201 |
+
result = {
|
| 1202 |
+
'file_name': img_name,
|
| 1203 |
+
'file_path': img_path,
|
| 1204 |
+
'img_data': self.image_to_base64(thumbnail),
|
| 1205 |
+
'final_score': final_score,
|
| 1206 |
+
'metadata': metadata,
|
| 1207 |
+
}
|
| 1208 |
+
|
| 1209 |
+
# Add evaluator results
|
| 1210 |
+
for evaluator_id in selected_evaluators:
|
| 1211 |
+
if evaluator_id in evaluation_results:
|
| 1212 |
+
result[evaluator_id] = evaluation_results[evaluator_id]
|
| 1213 |
+
|
| 1214 |
+
final_results.append(result)
|
| 1215 |
+
|
| 1216 |
+
log_events.append("All images processed.")
|
| 1217 |
+
return final_results, log_events, 100, optimal_batch
|
| 1218 |
+
|
| 1219 |
+
def image_to_base64(self, image: Image.Image) -> str:
|
| 1220 |
+
"""Convert PIL Image to base64 encoded JPEG string."""
|
| 1221 |
+
buffered = BytesIO()
|
| 1222 |
+
image.save(buffered, format="JPEG")
|
| 1223 |
+
return base64.b64encode(buffered.getvalue()).decode('utf-8')
|
| 1224 |
+
|
| 1225 |
+
def auto_tune_batch_size(self, images: list) -> int:
|
| 1226 |
+
"""Automatically determine the optimal batch size for processing."""
|
| 1227 |
+
# For simplicity, use a fixed batch size
|
| 1228 |
+
# In a real implementation, this would test different batch sizes
|
| 1229 |
+
return min(4, len(images))
|
| 1230 |
+
|
| 1231 |
+
|
| 1232 |
+
#####################################
|
| 1233 |
+
# Gradio Interface #
|
| 1234 |
+
#####################################
|
| 1235 |
+
|
| 1236 |
+
# Initialize evaluator manager and model manager
|
| 1237 |
evaluator_manager = EvaluatorManager()
|
| 1238 |
+
model_manager = ModelManager()
|
| 1239 |
|
| 1240 |
# Global variables to store uploaded images and results
|
| 1241 |
uploaded_images = {}
|
| 1242 |
evaluation_results = {}
|
| 1243 |
|
| 1244 |
+
def extract_metadata_from_image(image):
|
| 1245 |
+
"""
|
| 1246 |
+
Extract metadata from an uploaded image.
|
| 1247 |
+
|
| 1248 |
+
Args:
|
| 1249 |
+
image: Uploaded image.
|
| 1250 |
+
|
| 1251 |
+
Returns:
|
| 1252 |
+
tuple: (image, metadata)
|
| 1253 |
+
"""
|
| 1254 |
+
if image is None:
|
| 1255 |
+
return None, ""
|
| 1256 |
+
|
| 1257 |
+
metadata_manager = MetadataManager()
|
| 1258 |
+
metadata = metadata_manager.extract_metadata(image)
|
| 1259 |
+
|
| 1260 |
+
if metadata['has_metadata']:
|
| 1261 |
+
return image, metadata['raw_metadata'] or ""
|
| 1262 |
+
else:
|
| 1263 |
+
return image, "No metadata found in image."
|
| 1264 |
+
|
| 1265 |
+
def update_image_metadata(image, new_metadata):
|
| 1266 |
+
"""
|
| 1267 |
+
Update metadata in an image.
|
| 1268 |
+
|
| 1269 |
+
Args:
|
| 1270 |
+
image: Image to update.
|
| 1271 |
+
new_metadata: New metadata string.
|
| 1272 |
+
|
| 1273 |
+
Returns:
|
| 1274 |
+
tuple: (updated_image, metadata)
|
| 1275 |
+
"""
|
| 1276 |
+
if image is None:
|
| 1277 |
+
return None, ""
|
| 1278 |
+
|
| 1279 |
+
metadata_manager = MetadataManager()
|
| 1280 |
+
updated_image = metadata_manager.update_metadata(image, new_metadata)
|
| 1281 |
+
|
| 1282 |
+
return updated_image, new_metadata
|
| 1283 |
+
|
| 1284 |
def evaluate_images(images, model_name, selected_evaluators):
|
| 1285 |
"""
|
| 1286 |
Evaluate uploaded images using selected evaluators.
|
| 1287 |
|
| 1288 |
Args:
|
| 1289 |
+
images: List of uploaded image files.
|
| 1290 |
+
model_name: Name of the model that generated these images.
|
| 1291 |
+
selected_evaluators: List of evaluator IDs to use.
|
| 1292 |
|
| 1293 |
Returns:
|
| 1294 |
+
str: Status message.
|
| 1295 |
"""
|
| 1296 |
global uploaded_images, evaluation_results
|
| 1297 |
|
|
|
|
| 1337 |
|
| 1338 |
return f"Evaluated {len(images)} images for model '{model_name}'."
|
| 1339 |
|
| 1340 |
+
async def evaluate_images_async(images, model_name, selected_evaluators, auto_batch=True, batch_size=4):
|
| 1341 |
+
"""
|
| 1342 |
+
Asynchronously evaluate uploaded images using selected evaluators.
|
| 1343 |
+
|
| 1344 |
+
Args:
|
| 1345 |
+
images: List of uploaded image files.
|
| 1346 |
+
model_name: Name of the model that generated these images.
|
| 1347 |
+
selected_evaluators: List of evaluator IDs to use.
|
| 1348 |
+
auto_batch: Whether to automatically determine batch size.
|
| 1349 |
+
batch_size: Manual batch size if auto_batch is False.
|
| 1350 |
+
|
| 1351 |
+
Returns:
|
| 1352 |
+
tuple: (results, log, progress, batch_size)
|
| 1353 |
+
"""
|
| 1354 |
+
if not images:
|
| 1355 |
+
return [], ["No images uploaded."], 0, batch_size
|
| 1356 |
+
|
| 1357 |
+
if not model_name:
|
| 1358 |
+
model_name = "unknown_model"
|
| 1359 |
+
|
| 1360 |
+
# Start worker if not already running
|
| 1361 |
+
await model_manager.start_worker()
|
| 1362 |
+
|
| 1363 |
+
# Prepare request
|
| 1364 |
+
request_data = {
|
| 1365 |
+
'file_paths': images,
|
| 1366 |
+
'auto_batch': auto_batch,
|
| 1367 |
+
'manual_batch_size': batch_size,
|
| 1368 |
+
'selected_evaluators': selected_evaluators
|
| 1369 |
+
}
|
| 1370 |
+
|
| 1371 |
+
# Submit request and wait for results
|
| 1372 |
+
results, log_events, progress, actual_batch_size = await model_manager.submit_request(request_data)
|
| 1373 |
+
|
| 1374 |
+
# Store results in global variable
|
| 1375 |
+
if results:
|
| 1376 |
+
global evaluation_results
|
| 1377 |
+
if model_name not in evaluation_results:
|
| 1378 |
+
evaluation_results[model_name] = {}
|
| 1379 |
+
|
| 1380 |
+
for result in results:
|
| 1381 |
+
img_id = f"{model_name}_{os.path.basename(result['file_path'])}"
|
| 1382 |
+
evaluation_data = {
|
| 1383 |
+
'metadata': result.get('metadata', {}),
|
| 1384 |
+
'technical': result.get('technical', {}),
|
| 1385 |
+
'aesthetic': result.get('aesthetic', {}),
|
| 1386 |
+
'anime_specialized': result.get('anime_specialized', {})
|
| 1387 |
+
}
|
| 1388 |
+
evaluation_results[model_name][img_id] = evaluation_data
|
| 1389 |
+
|
| 1390 |
+
# Create results table HTML
|
| 1391 |
+
results_table_html = create_results_table(results)
|
| 1392 |
+
|
| 1393 |
+
return results_table_html, log_events, progress, actual_batch_size
|
| 1394 |
+
|
| 1395 |
def compare_models():
|
| 1396 |
"""
|
| 1397 |
Compare models based on evaluation results.
|
|
|
|
| 1445 |
plt.title('Overall Quality Scores by Model')
|
| 1446 |
plt.xlabel('Model')
|
| 1447 |
plt.ylabel('Score')
|
| 1448 |
+
plt.ylim(0, 10.5)
|
| 1449 |
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
| 1450 |
|
| 1451 |
# Save the chart
|
|
|
|
| 1480 |
plt.xticks(angles[:-1], categories)
|
| 1481 |
|
| 1482 |
# Set y-axis limits
|
| 1483 |
+
ax.set_ylim(0, 10)
|
| 1484 |
|
| 1485 |
# Add legend
|
| 1486 |
plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1))
|
|
|
|
| 1499 |
|
| 1500 |
return result_message, overall_chart_path, radar_chart_path
|
| 1501 |
|
| 1502 |
+
def create_results_table(results):
|
| 1503 |
+
"""
|
| 1504 |
+
Create an HTML table with results and image previews.
|
| 1505 |
+
|
| 1506 |
+
Args:
|
| 1507 |
+
results: List of evaluation results.
|
| 1508 |
+
|
| 1509 |
+
Returns:
|
| 1510 |
+
str: HTML table.
|
| 1511 |
+
"""
|
| 1512 |
+
if not results:
|
| 1513 |
+
return "No results to display."
|
| 1514 |
+
|
| 1515 |
+
# Sort results by final score (descending)
|
| 1516 |
+
sorted_results = sorted(results, key=lambda x: x.get('final_score', 0), reverse=True)
|
| 1517 |
+
|
| 1518 |
+
# Create HTML table
|
| 1519 |
+
html = """
|
| 1520 |
+
<style>
|
| 1521 |
+
.results-table {
|
| 1522 |
+
width: 100%;
|
| 1523 |
+
border-collapse: collapse;
|
| 1524 |
+
font-family: Arial, sans-serif;
|
| 1525 |
+
}
|
| 1526 |
+
.results-table th, .results-table td {
|
| 1527 |
+
border: 1px solid #ddd;
|
| 1528 |
+
padding: 8px;
|
| 1529 |
+
text-align: left;
|
| 1530 |
+
}
|
| 1531 |
+
.results-table th {
|
| 1532 |
+
background-color: #f2f2f2;
|
| 1533 |
+
position: sticky;
|
| 1534 |
+
top: 0;
|
| 1535 |
+
}
|
| 1536 |
+
.results-table tr:nth-child(even) {
|
| 1537 |
+
background-color: #f9f9f9;
|
| 1538 |
+
}
|
| 1539 |
+
.results-table tr:hover {
|
| 1540 |
+
background-color: #f1f1f1;
|
| 1541 |
+
}
|
| 1542 |
+
.image-preview {
|
| 1543 |
+
max-width: 150px;
|
| 1544 |
+
max-height: 150px;
|
| 1545 |
+
}
|
| 1546 |
+
.score {
|
| 1547 |
+
font-weight: bold;
|
| 1548 |
+
}
|
| 1549 |
+
.high-score {
|
| 1550 |
+
color: green;
|
| 1551 |
+
}
|
| 1552 |
+
.medium-score {
|
| 1553 |
+
color: orange;
|
| 1554 |
+
}
|
| 1555 |
+
.low-score {
|
| 1556 |
+
color: red;
|
| 1557 |
+
}
|
| 1558 |
+
.metadata-cell {
|
| 1559 |
+
max-width: 300px;
|
| 1560 |
+
overflow: hidden;
|
| 1561 |
+
text-overflow: ellipsis;
|
| 1562 |
+
white-space: nowrap;
|
| 1563 |
+
}
|
| 1564 |
+
.metadata-cell:hover {
|
| 1565 |
+
white-space: normal;
|
| 1566 |
+
overflow: visible;
|
| 1567 |
+
}
|
| 1568 |
+
</style>
|
| 1569 |
+
<table class="results-table">
|
| 1570 |
+
<thead>
|
| 1571 |
+
<tr>
|
| 1572 |
+
<th>Preview</th>
|
| 1573 |
+
<th>File Name</th>
|
| 1574 |
+
<th>Final Score</th>
|
| 1575 |
+
<th>Technical</th>
|
| 1576 |
+
<th>Aesthetic</th>
|
| 1577 |
+
<th>Anime</th>
|
| 1578 |
+
<th>Prompt</th>
|
| 1579 |
+
</tr>
|
| 1580 |
+
</thead>
|
| 1581 |
+
<tbody>
|
| 1582 |
+
"""
|
| 1583 |
+
|
| 1584 |
+
for result in sorted_results:
|
| 1585 |
+
# Determine score class
|
| 1586 |
+
score = result.get('final_score', 0)
|
| 1587 |
+
if score >= 7.5:
|
| 1588 |
+
score_class = "high-score"
|
| 1589 |
+
elif score >= 5:
|
| 1590 |
+
score_class = "medium-score"
|
| 1591 |
+
else:
|
| 1592 |
+
score_class = "low-score"
|
| 1593 |
+
|
| 1594 |
+
# Get technical score
|
| 1595 |
+
technical_score = "N/A"
|
| 1596 |
+
if 'technical' in result and 'overall_technical' in result['technical']:
|
| 1597 |
+
technical_score = f"{result['technical']['overall_technical']:.2f}"
|
| 1598 |
+
|
| 1599 |
+
# Get aesthetic score
|
| 1600 |
+
aesthetic_score = "N/A"
|
| 1601 |
+
if 'aesthetic' in result and 'overall_aesthetic' in result['aesthetic']:
|
| 1602 |
+
aesthetic_score = f"{result['aesthetic']['overall_aesthetic']:.2f}"
|
| 1603 |
+
|
| 1604 |
+
# Get anime score
|
| 1605 |
+
anime_score = "N/A"
|
| 1606 |
+
if 'anime_specialized' in result and 'overall_anime' in result['anime_specialized']:
|
| 1607 |
+
anime_score = f"{result['anime_specialized']['overall_anime']:.2f}"
|
| 1608 |
+
|
| 1609 |
+
# Get prompt from metadata
|
| 1610 |
+
prompt = "N/A"
|
| 1611 |
+
if 'metadata' in result and result['metadata'].get('prompt'):
|
| 1612 |
+
prompt = result['metadata']['prompt']
|
| 1613 |
+
|
| 1614 |
+
# Add row to table
|
| 1615 |
+
html += f"""
|
| 1616 |
+
<tr>
|
| 1617 |
+
<td><img src="data:image/jpeg;base64,{result['img_data']}" class="image-preview"></td>
|
| 1618 |
+
<td>{result['file_name']}</td>
|
| 1619 |
+
<td class="score {score_class}">{score:.2f}</td>
|
| 1620 |
+
<td>{technical_score}</td>
|
| 1621 |
+
<td>{aesthetic_score}</td>
|
| 1622 |
+
<td>{anime_score}</td>
|
| 1623 |
+
<td class="metadata-cell">{prompt}</td>
|
| 1624 |
+
</tr>
|
| 1625 |
+
"""
|
| 1626 |
+
|
| 1627 |
+
html += """
|
| 1628 |
+
</tbody>
|
| 1629 |
+
</table>
|
| 1630 |
+
"""
|
| 1631 |
+
|
| 1632 |
+
return html
|
| 1633 |
+
|
| 1634 |
def export_results(format_type):
|
| 1635 |
"""
|
| 1636 |
Export evaluation results to file.
|
| 1637 |
|
| 1638 |
Args:
|
| 1639 |
+
format_type: Export format ('csv', 'json', 'html', or 'markdown').
|
| 1640 |
|
| 1641 |
Returns:
|
| 1642 |
+
str: Path to exported file.
|
| 1643 |
"""
|
| 1644 |
global evaluation_results
|
| 1645 |
|
|
|
|
| 1688 |
for img_id, results in evaluation_results[model].items():
|
| 1689 |
row = {'Image': img_id}
|
| 1690 |
|
| 1691 |
+
# Add metadata if available
|
| 1692 |
+
if 'metadata' in results and results['metadata'].get('prompt'):
|
| 1693 |
+
row['Prompt'] = results['metadata']['prompt']
|
| 1694 |
+
|
| 1695 |
+
# Add evaluator results
|
| 1696 |
+
for evaluator_id in ['technical', 'aesthetic', 'anime_specialized']:
|
| 1697 |
+
if evaluator_id in results:
|
| 1698 |
+
for metric, value in results[evaluator_id].items():
|
| 1699 |
+
if isinstance(value, (int, float)):
|
| 1700 |
+
row[f"{evaluator_id}_{metric}"] = value
|
| 1701 |
|
| 1702 |
data.append(row)
|
| 1703 |
|
|
|
|
| 1722 |
json.dump(export_data, f, indent=2)
|
| 1723 |
elif format_type == 'html':
|
| 1724 |
output_path = os.path.join(output_dir, 'evaluation_results.html')
|
| 1725 |
+
|
| 1726 |
+
# Create HTML with both table and visualizations
|
| 1727 |
+
html_content = """
|
| 1728 |
+
<!DOCTYPE html>
|
| 1729 |
+
<html>
|
| 1730 |
+
<head>
|
| 1731 |
+
<title>Image Evaluation Results</title>
|
| 1732 |
+
<style>
|
| 1733 |
+
body { font-family: Arial, sans-serif; margin: 20px; }
|
| 1734 |
+
h1, h2 { color: #333; }
|
| 1735 |
+
.container { margin-bottom: 30px; }
|
| 1736 |
+
table { border-collapse: collapse; width: 100%; }
|
| 1737 |
+
th, td { border: 1px solid #ddd; padding: 8px; text-align: left; }
|
| 1738 |
+
th { background-color: #f2f2f2; }
|
| 1739 |
+
tr:nth-child(even) { background-color: #f9f9f9; }
|
| 1740 |
+
.chart { margin: 20px 0; max-width: 800px; }
|
| 1741 |
+
.best-model { font-weight: bold; color: green; }
|
| 1742 |
+
</style>
|
| 1743 |
+
</head>
|
| 1744 |
+
<body>
|
| 1745 |
+
<h1>Image Evaluation Results</h1>
|
| 1746 |
+
"""
|
| 1747 |
+
|
| 1748 |
+
if comparison:
|
| 1749 |
+
html_content += f"""
|
| 1750 |
+
<div class="container">
|
| 1751 |
+
<h2>Model Comparison</h2>
|
| 1752 |
+
<p class="best-model">Best model: {comparison['best_model']}</p>
|
| 1753 |
+
<table>
|
| 1754 |
+
<tr>
|
| 1755 |
+
<th>Rank</th>
|
| 1756 |
+
<th>Model</th>
|
| 1757 |
+
<th>Overall Score</th>
|
| 1758 |
+
<th>Technical</th>
|
| 1759 |
+
<th>Aesthetic</th>
|
| 1760 |
+
<th>Anime</th>
|
| 1761 |
+
</tr>
|
| 1762 |
+
"""
|
| 1763 |
+
|
| 1764 |
+
for rank in comparison['rankings']:
|
| 1765 |
+
model = rank['model']
|
| 1766 |
+
html_content += f"""
|
| 1767 |
+
<tr>
|
| 1768 |
+
<td>{rank['rank']}</td>
|
| 1769 |
+
<td>{model}</td>
|
| 1770 |
+
<td>{rank['score']:.2f}</td>
|
| 1771 |
+
<td>{comparison['comparison_metrics']['technical'].get(model, 0):.2f}</td>
|
| 1772 |
+
<td>{comparison['comparison_metrics']['aesthetic'].get(model, 0):.2f}</td>
|
| 1773 |
+
<td>{comparison['comparison_metrics']['anime_specialized'].get(model, 0):.2f}</td>
|
| 1774 |
+
</tr>
|
| 1775 |
+
"""
|
| 1776 |
+
|
| 1777 |
+
html_content += """
|
| 1778 |
+
</table>
|
| 1779 |
+
</div>
|
| 1780 |
+
"""
|
| 1781 |
+
|
| 1782 |
+
# Add charts
|
| 1783 |
+
html_content += """
|
| 1784 |
+
<div class="container">
|
| 1785 |
+
<h2>Visualizations</h2>
|
| 1786 |
+
<div class="chart">
|
| 1787 |
+
<h3>Overall Scores</h3>
|
| 1788 |
+
<img src="overall_comparison.png" alt="Overall Scores Chart">
|
| 1789 |
+
</div>
|
| 1790 |
+
<div class="chart">
|
| 1791 |
+
<h3>Detailed Metrics</h3>
|
| 1792 |
+
<img src="radar_comparison.png" alt="Radar Chart">
|
| 1793 |
+
</div>
|
| 1794 |
+
</div>
|
| 1795 |
+
"""
|
| 1796 |
+
|
| 1797 |
+
# Save charts
|
| 1798 |
+
plt.figure(figsize=(10, 6))
|
| 1799 |
+
overall_scores = [comparison['comparison_metrics']['overall'].get(model, 0) for model in models]
|
| 1800 |
+
bars = plt.bar(models, overall_scores, color='skyblue')
|
| 1801 |
+
for bar in bars:
|
| 1802 |
+
height = bar.get_height()
|
| 1803 |
+
plt.text(bar.get_x() + bar.get_width()/2., height + 0.01, f'{height:.2f}', ha='center', va='bottom')
|
| 1804 |
+
plt.title('Overall Quality Scores by Model')
|
| 1805 |
+
plt.xlabel('Model')
|
| 1806 |
+
plt.ylabel('Score')
|
| 1807 |
+
plt.ylim(0, 10.5)
|
| 1808 |
+
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
| 1809 |
+
plt.savefig(os.path.join(output_dir, 'overall_comparison.png'))
|
| 1810 |
+
plt.close()
|
| 1811 |
+
|
| 1812 |
+
# Create radar chart
|
| 1813 |
+
categories = [m.capitalize() for m in metrics[:-1]]
|
| 1814 |
+
N = len(categories)
|
| 1815 |
+
angles = [n / float(N) * 2 * np.pi for n in range(N)]
|
| 1816 |
+
angles += angles[:1]
|
| 1817 |
+
plt.figure(figsize=(10, 10))
|
| 1818 |
+
ax = plt.subplot(111, polar=True)
|
| 1819 |
+
colors = plt.cm.tab10(np.linspace(0, 1, len(models)))
|
| 1820 |
+
for i, model in enumerate(models):
|
| 1821 |
+
values = [comparison['comparison_metrics'][metric].get(model, 0) for metric in metrics[:-1]]
|
| 1822 |
+
values += values[:1]
|
| 1823 |
+
ax.plot(angles, values, linewidth=2, linestyle='solid', label=model, color=colors[i])
|
| 1824 |
+
ax.fill(angles, values, alpha=0.1, color=colors[i])
|
| 1825 |
+
plt.xticks(angles[:-1], categories)
|
| 1826 |
+
ax.set_ylim(0, 10)
|
| 1827 |
+
plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1))
|
| 1828 |
+
plt.title('Detailed Metrics Comparison by Model')
|
| 1829 |
+
plt.savefig(os.path.join(output_dir, 'radar_comparison.png'))
|
| 1830 |
+
plt.close()
|
| 1831 |
+
|
| 1832 |
+
# Add detailed results for each model
|
| 1833 |
+
for model in models:
|
| 1834 |
+
html_content += f"""
|
| 1835 |
+
<div class="container">
|
| 1836 |
+
<h2>Detailed Results: {model}</h2>
|
| 1837 |
+
<table>
|
| 1838 |
+
<tr>
|
| 1839 |
+
<th>Image</th>
|
| 1840 |
+
<th>Technical</th>
|
| 1841 |
+
<th>Aesthetic</th>
|
| 1842 |
+
<th>Anime</th>
|
| 1843 |
+
<th>Prompt</th>
|
| 1844 |
+
</tr>
|
| 1845 |
+
"""
|
| 1846 |
+
|
| 1847 |
+
for img_id, results in evaluation_results[model].items():
|
| 1848 |
+
technical = results.get('technical', {}).get('overall_technical', 'N/A')
|
| 1849 |
+
aesthetic = results.get('aesthetic', {}).get('overall_aesthetic', 'N/A')
|
| 1850 |
+
anime = results.get('anime_specialized', {}).get('overall_anime', 'N/A')
|
| 1851 |
+
prompt = results.get('metadata', {}).get('prompt', 'N/A')
|
| 1852 |
+
|
| 1853 |
+
if isinstance(technical, (int, float)):
|
| 1854 |
+
technical = f"{technical:.2f}"
|
| 1855 |
+
if isinstance(aesthetic, (int, float)):
|
| 1856 |
+
aesthetic = f"{aesthetic:.2f}"
|
| 1857 |
+
if isinstance(anime, (int, float)):
|
| 1858 |
+
anime = f"{anime:.2f}"
|
| 1859 |
+
|
| 1860 |
+
html_content += f"""
|
| 1861 |
+
<tr>
|
| 1862 |
+
<td>{img_id}</td>
|
| 1863 |
+
<td>{technical}</td>
|
| 1864 |
+
<td>{aesthetic}</td>
|
| 1865 |
+
<td>{anime}</td>
|
| 1866 |
+
<td>{prompt}</td>
|
| 1867 |
+
</tr>
|
| 1868 |
+
"""
|
| 1869 |
+
|
| 1870 |
+
html_content += """
|
| 1871 |
+
</table>
|
| 1872 |
+
</div>
|
| 1873 |
+
"""
|
| 1874 |
+
|
| 1875 |
+
html_content += """
|
| 1876 |
+
</body>
|
| 1877 |
+
</html>
|
| 1878 |
+
"""
|
| 1879 |
+
|
| 1880 |
+
with open(output_path, 'w') as f:
|
| 1881 |
+
f.write(html_content)
|
| 1882 |
+
elif format_type == 'markdown':
|
| 1883 |
+
output_path = os.path.join(output_dir, 'evaluation_results.md')
|
| 1884 |
+
|
| 1885 |
+
md_content = "# Image Evaluation Results\n\n"
|
| 1886 |
+
|
| 1887 |
+
if comparison:
|
| 1888 |
+
md_content += f"## Model Comparison\n\n**Best model: {comparison['best_model']}**\n\n"
|
| 1889 |
+
md_content += "| Rank | Model | Overall Score | Technical | Aesthetic | Anime |\n"
|
| 1890 |
+
md_content += "|------|-------|--------------|-----------|-----------|-------|\n"
|
| 1891 |
+
|
| 1892 |
+
for rank in comparison['rankings']:
|
| 1893 |
+
model = rank['model']
|
| 1894 |
+
md_content += f"| {rank['rank']} | {model} | {rank['score']:.2f} | "
|
| 1895 |
+
md_content += f"{comparison['comparison_metrics']['technical'].get(model, 0):.2f} | "
|
| 1896 |
+
md_content += f"{comparison['comparison_metrics']['aesthetic'].get(model, 0):.2f} | "
|
| 1897 |
+
md_content += f"{comparison['comparison_metrics']['anime_specialized'].get(model, 0):.2f} |\n"
|
| 1898 |
+
|
| 1899 |
+
md_content += "\n"
|
| 1900 |
+
|
| 1901 |
+
# Add detailed results for each model
|
| 1902 |
+
for model in models:
|
| 1903 |
+
md_content += f"## Detailed Results: {model}\n\n"
|
| 1904 |
+
md_content += "| Image | Technical | Aesthetic | Anime | Prompt |\n"
|
| 1905 |
+
md_content += "|-------|-----------|-----------|-------|--------|\n"
|
| 1906 |
+
|
| 1907 |
+
for img_id, results in evaluation_results[model].items():
|
| 1908 |
+
technical = results.get('technical', {}).get('overall_technical', 'N/A')
|
| 1909 |
+
aesthetic = results.get('aesthetic', {}).get('overall_aesthetic', 'N/A')
|
| 1910 |
+
anime = results.get('anime_specialized', {}).get('overall_anime', 'N/A')
|
| 1911 |
+
prompt = results.get('metadata', {}).get('prompt', 'N/A')
|
| 1912 |
+
|
| 1913 |
+
if isinstance(technical, (int, float)):
|
| 1914 |
+
technical = f"{technical:.2f}"
|
| 1915 |
+
if isinstance(aesthetic, (int, float)):
|
| 1916 |
+
aesthetic = f"{aesthetic:.2f}"
|
| 1917 |
+
if isinstance(anime, (int, float)):
|
| 1918 |
+
anime = f"{anime:.2f}"
|
| 1919 |
+
|
| 1920 |
+
# Truncate prompt if too long
|
| 1921 |
+
if len(str(prompt)) > 50:
|
| 1922 |
+
prompt = str(prompt)[:47] + "..."
|
| 1923 |
+
|
| 1924 |
+
md_content += f"| {img_id} | {technical} | {aesthetic} | {anime} | {prompt} |\n"
|
| 1925 |
+
|
| 1926 |
+
md_content += "\n"
|
| 1927 |
+
|
| 1928 |
+
with open(output_path, 'w') as f:
|
| 1929 |
+
f.write(md_content)
|
| 1930 |
else:
|
| 1931 |
return f"Unsupported format: {format_type}"
|
| 1932 |
|
|
|
|
| 1951 |
|
| 1952 |
with gr.Tab("Upload & Evaluate"):
|
| 1953 |
with gr.Row():
|
| 1954 |
+
with gr.Column(scale=1):
|
| 1955 |
images_input = gr.File(file_count="multiple", label="Upload Images")
|
| 1956 |
model_name_input = gr.Textbox(label="Model Name", placeholder="Enter model name")
|
| 1957 |
evaluator_select = gr.CheckboxGroup(choices=evaluator_choices, label="Select Evaluators", value=evaluator_choices)
|
| 1958 |
+
auto_batch = gr.Checkbox(label="Auto Batch Size", value=True)
|
| 1959 |
+
batch_size = gr.Number(label="Batch Size (if Auto is off)", value=4, precision=0)
|
| 1960 |
evaluate_button = gr.Button("Evaluate Images")
|
| 1961 |
|
| 1962 |
+
with gr.Column(scale=2):
|
| 1963 |
+
with gr.Row():
|
| 1964 |
+
evaluation_output = gr.Textbox(label="Evaluation Status")
|
| 1965 |
+
progress = gr.Number(label="Progress (%)", value=0, precision=0)
|
| 1966 |
+
|
| 1967 |
+
log_output = gr.Textbox(label="Processing Log", lines=10)
|
| 1968 |
+
results_table = gr.HTML(label="Results Table")
|
|
|
|
| 1969 |
|
| 1970 |
with gr.Tab("Compare Models"):
|
| 1971 |
with gr.Row():
|
|
|
|
| 1978 |
with gr.Column():
|
| 1979 |
overall_chart = gr.Image(label="Overall Scores")
|
| 1980 |
radar_chart = gr.Image(label="Detailed Metrics")
|
| 1981 |
+
|
| 1982 |
+
with gr.Tab("Metadata Viewer"):
|
| 1983 |
+
with gr.Row():
|
| 1984 |
+
with gr.Column():
|
| 1985 |
+
metadata_image_input = gr.Image(type="pil", label="Upload Image for Metadata")
|
| 1986 |
+
|
| 1987 |
+
with gr.Column():
|
| 1988 |
+
metadata_output = gr.Textbox(label="Image Metadata", lines=10)
|
| 1989 |
+
with gr.Row():
|
| 1990 |
+
copy_metadata_button = gr.Button("Copy Metadata")
|
| 1991 |
+
update_metadata_button = gr.Button("Update Metadata")
|
| 1992 |
|
| 1993 |
with gr.Tab("Export Results"):
|
| 1994 |
with gr.Row():
|
| 1995 |
+
format_select = gr.Radio(choices=["csv", "json", "html", "markdown"], label="Export Format", value="html")
|
| 1996 |
export_button = gr.Button("Export Results")
|
| 1997 |
|
| 1998 |
with gr.Row():
|
| 1999 |
export_output = gr.Textbox(label="Export Status")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2000 |
|
| 2001 |
with gr.Tab("Help"):
|
| 2002 |
gr.Markdown("""
|
|
|
|
| 2016 |
- The best model will be highlighted
|
| 2017 |
- View charts for visual comparison
|
| 2018 |
|
| 2019 |
+
### Step 3: View Metadata
|
| 2020 |
+
- Go to the "Metadata Viewer" tab
|
| 2021 |
+
- Upload an image to view its metadata
|
| 2022 |
+
- Edit metadata if needed
|
| 2023 |
+
|
| 2024 |
+
### Step 4: Export Results
|
| 2025 |
- Go to the "Export Results" tab
|
| 2026 |
+
- Select export format (CSV, JSON, HTML, or Markdown)
|
| 2027 |
- Click "Export Results"
|
| 2028 |
- Download the exported file
|
| 2029 |
|
|
|
|
| 2040 |
- Color Harmony: Measures how well colors work together
|
| 2041 |
- Composition: Measures adherence to compositional principles
|
| 2042 |
- Visual Interest: Measures how visually engaging the image is
|
| 2043 |
+
- Aesthetic Predictor: Score from Aesthetic Predictor V2.5 model
|
| 2044 |
+
- Aesthetic Shadow: Score from Aesthetic Shadow model
|
| 2045 |
|
| 2046 |
#### Anime-Specific Metrics
|
| 2047 |
- Line Quality: Measures clarity and quality of line work
|
| 2048 |
- Color Palette: Evaluates color choices for anime style
|
| 2049 |
+
- Character Quality: Assesses character design and rendering using Waifu Scorer
|
| 2050 |
+
- Anime Aesthetic: Score from specialized anime aesthetic model
|
| 2051 |
- Style Consistency: Measures adherence to anime style conventions
|
| 2052 |
""")
|
| 2053 |
|
|
|
|
| 2055 |
reset_button = gr.Button("Reset All Data")
|
| 2056 |
reset_output = gr.Textbox(label="Reset Status")
|
| 2057 |
|
| 2058 |
+
# Event handlers
|
| 2059 |
+
evaluate_button.click(
|
| 2060 |
+
fn=lambda *args: asyncio.create_task(evaluate_images_async(*args)),
|
| 2061 |
+
inputs=[images_input, model_name_input, evaluator_select, auto_batch, batch_size],
|
| 2062 |
+
outputs=[results_table, log_output, progress, batch_size]
|
| 2063 |
+
)
|
| 2064 |
+
|
| 2065 |
+
compare_button.click(
|
| 2066 |
+
compare_models,
|
| 2067 |
+
inputs=[],
|
| 2068 |
+
outputs=[comparison_output, overall_chart, radar_chart]
|
| 2069 |
+
)
|
| 2070 |
+
|
| 2071 |
+
metadata_image_input.change(
|
| 2072 |
+
extract_metadata_from_image,
|
| 2073 |
+
inputs=[metadata_image_input],
|
| 2074 |
+
outputs=[metadata_image_input, metadata_output]
|
| 2075 |
+
)
|
| 2076 |
+
|
| 2077 |
+
update_metadata_button.click(
|
| 2078 |
+
update_image_metadata,
|
| 2079 |
+
inputs=[metadata_image_input, metadata_output],
|
| 2080 |
+
outputs=[metadata_image_input, metadata_output]
|
| 2081 |
+
)
|
| 2082 |
+
|
| 2083 |
+
copy_metadata_button.click(
|
| 2084 |
+
lambda x: x,
|
| 2085 |
+
inputs=[metadata_output],
|
| 2086 |
+
outputs=[metadata_output]
|
| 2087 |
+
)
|
| 2088 |
+
|
| 2089 |
+
export_button.click(
|
| 2090 |
+
export_results,
|
| 2091 |
+
inputs=[format_select],
|
| 2092 |
+
outputs=[export_output]
|
| 2093 |
+
)
|
| 2094 |
+
|
| 2095 |
reset_button.click(
|
| 2096 |
reset_data,
|
| 2097 |
inputs=[],
|
| 2098 |
+
outputs=[reset_output]
|
| 2099 |
)
|
| 2100 |
|
| 2101 |
return interface
|
|
|
|
| 2104 |
interface = create_interface()
|
| 2105 |
|
| 2106 |
if __name__ == "__main__":
|
| 2107 |
+
# Import re here to avoid circular import
|
| 2108 |
+
interface.launch(server_name="0.0.0.0")
|
requirements.txt
CHANGED
|
@@ -8,3 +8,6 @@ pandas>=1.4.0
|
|
| 8 |
matplotlib>=3.5.0
|
| 9 |
tqdm>=4.62.0
|
| 10 |
scikit-image>=0.19.0
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
matplotlib>=3.5.0
|
| 9 |
tqdm>=4.62.0
|
| 10 |
scikit-image>=0.19.0
|
| 11 |
+
transformers>=4.30.0
|
| 12 |
+
huggingface-hub>=0.16.0
|
| 13 |
+
onnxruntime>=1.15.0
|