Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
# Load tokenizer and model
|
| 6 |
+
tokenizer = AutoTokenizer.from_pretrained("BAAI/Video-XL-2", trust_remote_code=True)
|
| 7 |
+
model = AutoModelForCausalLM.from_pretrained("BAAI/Video-XL-2", trust_remote_code=True)
|
| 8 |
+
|
| 9 |
+
# Inference function
|
| 10 |
+
def generate_response(prompt, max_new_tokens=100):
|
| 11 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 12 |
+
with torch.no_grad():
|
| 13 |
+
outputs = model.generate(
|
| 14 |
+
**inputs,
|
| 15 |
+
max_new_tokens=max_new_tokens,
|
| 16 |
+
do_sample=True,
|
| 17 |
+
top_k=50,
|
| 18 |
+
top_p=0.95,
|
| 19 |
+
temperature=0.7,
|
| 20 |
+
pad_token_id=tokenizer.eos_token_id
|
| 21 |
+
)
|
| 22 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 23 |
+
return response[len(prompt):].strip()
|
| 24 |
+
|
| 25 |
+
# Gradio interface
|
| 26 |
+
iface = gr.Interface(
|
| 27 |
+
fn=generate_response,
|
| 28 |
+
inputs=[
|
| 29 |
+
gr.Textbox(label="Enter your prompt", lines=4, placeholder="Ask me something..."),
|
| 30 |
+
gr.Slider(minimum=10, maximum=300, step=10, value=100, label="Max New Tokens"),
|
| 31 |
+
],
|
| 32 |
+
outputs=gr.Textbox(label="Response"),
|
| 33 |
+
title="Video-XL-2 Chatbot",
|
| 34 |
+
description="This chatbot uses the BAAI Video-XL-2 model to generate responses based on your input."
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
if __name__ == "__main__":
|
| 38 |
+
iface.launch()
|