Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import torch
|
| 3 |
import os
|
| 4 |
import numpy as np
|
|
@@ -7,10 +8,11 @@ from transformers import AutoModel, AutoTokenizer
|
|
| 7 |
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
| 8 |
from parler_tts import ParlerTTSForConditionalGeneration
|
| 9 |
import soundfile as sf
|
| 10 |
-
from
|
| 11 |
-
from
|
| 12 |
-
from
|
| 13 |
-
from langchain import
|
|
|
|
| 14 |
from PIL import Image
|
| 15 |
from decord import VideoReader, cpu
|
| 16 |
import requests
|
|
@@ -61,21 +63,21 @@ def numpy_calculate(code: str) -> str:
|
|
| 61 |
return str(result)
|
| 62 |
except Exception as e:
|
| 63 |
return f"An error occurred: {str(e)}"
|
| 64 |
-
|
| 65 |
# Function to handle different input types
|
| 66 |
def handle_input(user_prompt, image=None, video=None, audio=None, doc=None):
|
| 67 |
messages = [{"role": "user", "content": user_prompt}]
|
| 68 |
-
|
| 69 |
if audio:
|
| 70 |
transcription = client.audio.transcriptions.create(
|
| 71 |
file=(audio.name, audio.read()),
|
| 72 |
model="whisper-large-v3"
|
| 73 |
)
|
| 74 |
user_prompt = transcription.text
|
| 75 |
-
|
| 76 |
if doc:
|
| 77 |
-
|
| 78 |
-
response =
|
| 79 |
elif image and not video:
|
| 80 |
image = Image.open(image).convert('RGB')
|
| 81 |
messages[0]['content'] = [image, user_prompt]
|
|
@@ -90,15 +92,24 @@ def handle_input(user_prompt, image=None, video=None, audio=None, doc=None):
|
|
| 90 |
messages=messages,
|
| 91 |
tools=initialize_tools()
|
| 92 |
).choices[0].message.content
|
| 93 |
-
|
| 94 |
return response
|
| 95 |
|
| 96 |
-
# Function to
|
| 97 |
-
def
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
# Function to encode video
|
| 104 |
def encode_video(video_path):
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
import torch
|
| 4 |
import os
|
| 5 |
import numpy as np
|
|
|
|
| 8 |
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
| 9 |
from parler_tts import ParlerTTSForConditionalGeneration
|
| 10 |
import soundfile as sf
|
| 11 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
| 12 |
+
from langchain.vectorstores import Chroma
|
| 13 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 14 |
+
from langchain.chains import RetrievalQA
|
| 15 |
+
from langchain.llms import OpenAI
|
| 16 |
from PIL import Image
|
| 17 |
from decord import VideoReader, cpu
|
| 18 |
import requests
|
|
|
|
| 63 |
return str(result)
|
| 64 |
except Exception as e:
|
| 65 |
return f"An error occurred: {str(e)}"
|
| 66 |
+
|
| 67 |
# Function to handle different input types
|
| 68 |
def handle_input(user_prompt, image=None, video=None, audio=None, doc=None):
|
| 69 |
messages = [{"role": "user", "content": user_prompt}]
|
| 70 |
+
|
| 71 |
if audio:
|
| 72 |
transcription = client.audio.transcriptions.create(
|
| 73 |
file=(audio.name, audio.read()),
|
| 74 |
model="whisper-large-v3"
|
| 75 |
)
|
| 76 |
user_prompt = transcription.text
|
| 77 |
+
|
| 78 |
if doc:
|
| 79 |
+
# RAG with Langchain
|
| 80 |
+
response = use_langchain_rag(doc.name, doc.read(), user_prompt)
|
| 81 |
elif image and not video:
|
| 82 |
image = Image.open(image).convert('RGB')
|
| 83 |
messages[0]['content'] = [image, user_prompt]
|
|
|
|
| 92 |
messages=messages,
|
| 93 |
tools=initialize_tools()
|
| 94 |
).choices[0].message.content
|
| 95 |
+
|
| 96 |
return response
|
| 97 |
|
| 98 |
+
# Function to use Langchain for RAG
|
| 99 |
+
def use_langchain_rag(file_name, file_content, query):
|
| 100 |
+
# Split the document into chunks
|
| 101 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
| 102 |
+
docs = text_splitter.create_documents([file_content])
|
| 103 |
+
|
| 104 |
+
# Create embeddings and store in the vector database
|
| 105 |
+
embeddings = OpenAIEmbeddings()
|
| 106 |
+
db = Chroma.from_documents(docs, embeddings, persist_directory=".chroma_db") # Use a persistent directory
|
| 107 |
+
|
| 108 |
+
# Create a question-answering chain
|
| 109 |
+
qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=db.as_retriever())
|
| 110 |
+
|
| 111 |
+
# Get the answer
|
| 112 |
+
return qa.run(query)
|
| 113 |
|
| 114 |
# Function to encode video
|
| 115 |
def encode_video(video_path):
|