Update app.py
Browse files
app.py
CHANGED
|
@@ -1,43 +1,24 @@
|
|
| 1 |
-
import
|
| 2 |
-
from transformers import
|
| 3 |
-
|
| 4 |
-
# 加载
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
#
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
#
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
# 聊天框组件
|
| 27 |
-
chatbot = gr.Chatbot()
|
| 28 |
-
msg = gr.Textbox(label="Type your message:")
|
| 29 |
-
clear = gr.Button("Clear")
|
| 30 |
-
|
| 31 |
-
# 定义响应函数,处理用户输入并更新聊天历史
|
| 32 |
-
def respond(message, chat_history):
|
| 33 |
-
response = chat_with_ai(message)
|
| 34 |
-
chat_history.append((message, response)) # 将对话记录添加到聊天历史
|
| 35 |
-
return "", chat_history
|
| 36 |
-
|
| 37 |
-
# 提交消息并更新聊天记录
|
| 38 |
-
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
| 39 |
-
# 清空聊天记录
|
| 40 |
-
clear.click(lambda: [], None, chatbot)
|
| 41 |
-
|
| 42 |
-
# 启动 Gradio 界面
|
| 43 |
-
demo.launch()
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
| 3 |
+
|
| 4 |
+
# 加载 DeepSeekMath 模型和分词器
|
| 5 |
+
model_name = "deepseek-ai/deepseek-math-7b-instruct"
|
| 6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
| 8 |
+
model.generation_config = GenerationConfig.from_pretrained(model_name)
|
| 9 |
+
model.generation_config.pad_token_id = model.generation_config.eos_token_id
|
| 10 |
+
|
| 11 |
+
# 定义带有链式推理的数学问题
|
| 12 |
+
messages = [
|
| 13 |
+
{"role": "user", "content": "what is the integral of x^2 from 0 to 2?\nPlease reason step by step, and put your final answer within \\boxed{}."}
|
| 14 |
+
]
|
| 15 |
+
|
| 16 |
+
# 将问题转换为模型输入格式
|
| 17 |
+
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
|
| 18 |
+
|
| 19 |
+
# 生成模型的输出
|
| 20 |
+
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)
|
| 21 |
+
|
| 22 |
+
# 解码输出并打印结果
|
| 23 |
+
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
|
| 24 |
+
print(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|