Spaces:
Running
Running
Add dash backend visualizer.
Browse files- README-dash-visualizer.md +91 -0
- dash_visualizer.py +310 -0
- pipeline.py +27 -3
- requirements-dash.txt +5 -0
README-dash-visualizer.md
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Pipeline Parallelism Dash Visualizer
|
| 2 |
+
|
| 3 |
+
This is an interactive Dash-based visualizer for pipeline parallelism scheduling, complementing the existing Matplotlib-based visualization.
|
| 4 |
+
|
| 5 |
+
## Features
|
| 6 |
+
|
| 7 |
+
- **Static image generation** similar to the Matplotlib version
|
| 8 |
+
- **Interactive web-based visualization** with Dash
|
| 9 |
+
- **Download functionality** to save the visualization as PNG
|
| 10 |
+
- **Progress indication** during figure creation and image generation
|
| 11 |
+
- **Compatible API** with the existing visualizer
|
| 12 |
+
|
| 13 |
+
## Installation
|
| 14 |
+
|
| 15 |
+
Install the required dependencies:
|
| 16 |
+
|
| 17 |
+
```bash
|
| 18 |
+
pip install -r requirements-dash.txt
|
| 19 |
+
```
|
| 20 |
+
|
| 21 |
+
## Usage
|
| 22 |
+
|
| 23 |
+
### From Python
|
| 24 |
+
|
| 25 |
+
```python
|
| 26 |
+
from pipeline import create_1f1b_schedule
|
| 27 |
+
from dash_visualizer import visualize_pipeline_parallelism_dash, save_pipeline_visualization_plotly
|
| 28 |
+
|
| 29 |
+
# Create a schedule
|
| 30 |
+
schedule = create_1f1b_schedule(
|
| 31 |
+
num_stages=4,
|
| 32 |
+
num_batches=8,
|
| 33 |
+
forward_times=[1.0, 1.0, 1.0, 1.0],
|
| 34 |
+
backward_times=[2.0, 2.0, 2.0, 2.0],
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
# Generate a static image
|
| 38 |
+
save_pipeline_visualization_plotly(
|
| 39 |
+
schedule=schedule,
|
| 40 |
+
schedule_type="1f1b",
|
| 41 |
+
output_file="pipeline_plotly.png"
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
# OR launch an interactive Dash app
|
| 45 |
+
visualize_pipeline_parallelism_dash(
|
| 46 |
+
schedule=schedule,
|
| 47 |
+
schedule_type="1f1b",
|
| 48 |
+
port=8050,
|
| 49 |
+
debug=False
|
| 50 |
+
)
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
### Using the Command Line
|
| 54 |
+
|
| 55 |
+
You can use the updated command line interface:
|
| 56 |
+
|
| 57 |
+
```bash
|
| 58 |
+
# Generate a static image with Dash/Plotly
|
| 59 |
+
python pipeline.py --visualizer dash --output-file pipeline_viz.png
|
| 60 |
+
|
| 61 |
+
# Launch an interactive Dash app
|
| 62 |
+
python pipeline.py --visualizer dash-interactive
|
| 63 |
+
|
| 64 |
+
# Use the original Matplotlib visualizer
|
| 65 |
+
python pipeline.py --visualizer matplotlib
|
| 66 |
+
```
|
| 67 |
+
|
| 68 |
+
You can also use the dash_visualizer.py script directly for testing:
|
| 69 |
+
|
| 70 |
+
```bash
|
| 71 |
+
# Generate a static image
|
| 72 |
+
python dash_visualizer.py --output test_viz.png
|
| 73 |
+
|
| 74 |
+
# Launch an interactive app
|
| 75 |
+
python dash_visualizer.py --interactive
|
| 76 |
+
```
|
| 77 |
+
|
| 78 |
+
## Differences from Matplotlib Visualizer
|
| 79 |
+
|
| 80 |
+
The Dash-based visualizer provides all the same visual elements as the Matplotlib version:
|
| 81 |
+
- Color-coded rectangles for forward, backward, and optimizer operations
|
| 82 |
+
- Batch numbers displayed inside each rectangle
|
| 83 |
+
- Device labels on the y-axis
|
| 84 |
+
- Clear legend
|
| 85 |
+
|
| 86 |
+
Additional features:
|
| 87 |
+
- Interactive web interface
|
| 88 |
+
- Hovering over elements to see details
|
| 89 |
+
- Download button to save the visualization
|
| 90 |
+
- Progress bars for tracking visualization creation
|
| 91 |
+
- Responsive layout that works well on different screen sizes
|
dash_visualizer.py
ADDED
|
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import dash
|
| 2 |
+
from dash import dcc, html
|
| 3 |
+
from dash.dependencies import Input, Output, State
|
| 4 |
+
import plotly.graph_objects as go
|
| 5 |
+
import numpy as np
|
| 6 |
+
from typing import List, Dict, Literal
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
import time
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def create_pipeline_figure(schedule: Dict[int, List[Dict]], max_time=None, show_progress=True):
|
| 12 |
+
"""
|
| 13 |
+
Create a Plotly figure for pipeline parallelism scheduling.
|
| 14 |
+
|
| 15 |
+
Args:
|
| 16 |
+
schedule: Dictionary mapping device IDs to lists of tasks.
|
| 17 |
+
Each task is a dictionary with keys:
|
| 18 |
+
- 'type': 'forward', 'backward', or 'optimizer'
|
| 19 |
+
- 'batch': batch number
|
| 20 |
+
- 'start_time': start time of the task
|
| 21 |
+
- 'duration': duration of the task
|
| 22 |
+
max_time: Optional maximum time to display
|
| 23 |
+
show_progress: Whether to show a progress bar
|
| 24 |
+
"""
|
| 25 |
+
# Colors for task types
|
| 26 |
+
forward_color = "royalblue"
|
| 27 |
+
backward_color = "sandybrown"
|
| 28 |
+
optimizer_color = "#FFEFCF"
|
| 29 |
+
empty_color = "whitesmoke"
|
| 30 |
+
|
| 31 |
+
# Find the number of stages (devices)
|
| 32 |
+
num_stages = len(schedule)
|
| 33 |
+
|
| 34 |
+
# Find the maximum time in the schedule if not provided
|
| 35 |
+
if max_time is None:
|
| 36 |
+
max_time = 0
|
| 37 |
+
for device in schedule:
|
| 38 |
+
for task in schedule[device]:
|
| 39 |
+
end_time = task["start_time"] + task["duration"]
|
| 40 |
+
if end_time > max_time:
|
| 41 |
+
max_time = end_time
|
| 42 |
+
|
| 43 |
+
# Create a figure
|
| 44 |
+
fig = go.Figure()
|
| 45 |
+
|
| 46 |
+
# Initialize progress tracking
|
| 47 |
+
total_tasks = sum(len(tasks) for tasks in schedule.values())
|
| 48 |
+
tasks_processed = 0
|
| 49 |
+
|
| 50 |
+
if show_progress:
|
| 51 |
+
progress_bar = tqdm(total=total_tasks + num_stages + 3, desc="Creating visualization")
|
| 52 |
+
|
| 53 |
+
# Add background for empty cells
|
| 54 |
+
for device_idx in range(num_stages):
|
| 55 |
+
device_idx_reversed = num_stages - device_idx - 1 # Reverse for plotting
|
| 56 |
+
fig.add_trace(go.Scatter(
|
| 57 |
+
x=[0, max_time],
|
| 58 |
+
y=[device_idx_reversed, device_idx_reversed],
|
| 59 |
+
mode='lines',
|
| 60 |
+
line=dict(color='lightgray', width=0.5),
|
| 61 |
+
showlegend=False,
|
| 62 |
+
hoverinfo='none'
|
| 63 |
+
))
|
| 64 |
+
if show_progress:
|
| 65 |
+
progress_bar.update(1)
|
| 66 |
+
|
| 67 |
+
# Add rectangles for each task
|
| 68 |
+
for device_idx, device in enumerate(schedule):
|
| 69 |
+
device_idx_reversed = num_stages - device_idx - 1
|
| 70 |
+
|
| 71 |
+
for task in schedule[device]:
|
| 72 |
+
# Determine task color and text color
|
| 73 |
+
if task["type"] == "forward":
|
| 74 |
+
color = forward_color
|
| 75 |
+
text_color = "white"
|
| 76 |
+
name = "Forward"
|
| 77 |
+
elif task["type"] == "backward":
|
| 78 |
+
color = backward_color
|
| 79 |
+
text_color = "black"
|
| 80 |
+
name = "Backward"
|
| 81 |
+
else: # optimizer or any other type
|
| 82 |
+
color = optimizer_color
|
| 83 |
+
text_color = "black"
|
| 84 |
+
name = "Optimizer step"
|
| 85 |
+
|
| 86 |
+
# Add rectangle for the task
|
| 87 |
+
start_time = task["start_time"]
|
| 88 |
+
duration = task["duration"]
|
| 89 |
+
|
| 90 |
+
# Create rectangle using shape
|
| 91 |
+
fig.add_shape(
|
| 92 |
+
type="rect",
|
| 93 |
+
x0=start_time,
|
| 94 |
+
y0=device_idx_reversed - 0.4,
|
| 95 |
+
x1=start_time + duration,
|
| 96 |
+
y1=device_idx_reversed + 0.4,
|
| 97 |
+
line=dict(color="black", width=0.5),
|
| 98 |
+
fillcolor=color,
|
| 99 |
+
layer="above",
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
# Add batch number text
|
| 103 |
+
fig.add_annotation(
|
| 104 |
+
x=start_time + duration / 2,
|
| 105 |
+
y=device_idx_reversed,
|
| 106 |
+
text=str(task["batch"]),
|
| 107 |
+
showarrow=False,
|
| 108 |
+
font=dict(color=text_color, size=10, family="Arial, bold"),
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
# Update progress
|
| 112 |
+
if show_progress:
|
| 113 |
+
tasks_processed += 1
|
| 114 |
+
progress_bar.update(1)
|
| 115 |
+
|
| 116 |
+
# Add custom legend
|
| 117 |
+
legend_items = [
|
| 118 |
+
dict(name="Forward", color=forward_color),
|
| 119 |
+
dict(name="Backward", color=backward_color),
|
| 120 |
+
dict(name="Optimizer step", color=optimizer_color)
|
| 121 |
+
]
|
| 122 |
+
|
| 123 |
+
for i, item in enumerate(legend_items):
|
| 124 |
+
fig.add_trace(go.Scatter(
|
| 125 |
+
x=[None],
|
| 126 |
+
y=[None],
|
| 127 |
+
mode='markers',
|
| 128 |
+
marker=dict(size=10, color=item['color']),
|
| 129 |
+
name=item['name'],
|
| 130 |
+
showlegend=True
|
| 131 |
+
))
|
| 132 |
+
if show_progress and i < len(legend_items) - 1:
|
| 133 |
+
progress_bar.update(1)
|
| 134 |
+
|
| 135 |
+
# Set axis properties
|
| 136 |
+
device_labels = [f"Device {i+1}" for i in range(num_stages)]
|
| 137 |
+
device_labels.reverse() # Reverse to put Device 1 at the top
|
| 138 |
+
|
| 139 |
+
fig.update_layout(
|
| 140 |
+
xaxis=dict(
|
| 141 |
+
showticklabels=False,
|
| 142 |
+
showgrid=False,
|
| 143 |
+
zeroline=False,
|
| 144 |
+
title="Time →",
|
| 145 |
+
range=[0, max_time + 0.5]
|
| 146 |
+
),
|
| 147 |
+
yaxis=dict(
|
| 148 |
+
tickmode="array",
|
| 149 |
+
tickvals=list(range(num_stages)),
|
| 150 |
+
ticktext=device_labels,
|
| 151 |
+
showgrid=False,
|
| 152 |
+
zeroline=False,
|
| 153 |
+
range=[-0.5, num_stages - 0.5]
|
| 154 |
+
),
|
| 155 |
+
margin=dict(l=50, r=50, t=50, b=50),
|
| 156 |
+
plot_bgcolor="white",
|
| 157 |
+
legend=dict(
|
| 158 |
+
orientation="h",
|
| 159 |
+
yanchor="bottom",
|
| 160 |
+
y=-0.2,
|
| 161 |
+
xanchor="center",
|
| 162 |
+
x=0.5
|
| 163 |
+
)
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
if show_progress:
|
| 167 |
+
progress_bar.update(1) # Final update for layout
|
| 168 |
+
progress_bar.close()
|
| 169 |
+
|
| 170 |
+
return fig
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def create_dash_app(schedule: Dict[int, List[Dict]], schedule_type="1f1b"):
|
| 174 |
+
"""
|
| 175 |
+
Create a Dash app for interactive visualization of pipeline scheduling.
|
| 176 |
+
|
| 177 |
+
Args:
|
| 178 |
+
schedule: Dictionary mapping device IDs to lists of tasks
|
| 179 |
+
schedule_type: Type of scheduling algorithm used
|
| 180 |
+
"""
|
| 181 |
+
app = dash.Dash(__name__, title="Pipeline Parallelism Visualization")
|
| 182 |
+
|
| 183 |
+
app.layout = html.Div([
|
| 184 |
+
html.H1(f"Pipeline Parallelism Visualization ({schedule_type.upper()})",
|
| 185 |
+
style={'textAlign': 'center'}),
|
| 186 |
+
|
| 187 |
+
html.Div(id="loading-container", children=[
|
| 188 |
+
dcc.Loading(
|
| 189 |
+
id="loading-graph",
|
| 190 |
+
type="circle",
|
| 191 |
+
children=[
|
| 192 |
+
html.Div(id="graph-container", children=[
|
| 193 |
+
dcc.Graph(
|
| 194 |
+
id='pipeline-graph',
|
| 195 |
+
style={'height': '600px'}
|
| 196 |
+
)
|
| 197 |
+
])
|
| 198 |
+
]
|
| 199 |
+
)
|
| 200 |
+
]),
|
| 201 |
+
|
| 202 |
+
html.Div([
|
| 203 |
+
html.Button("Download PNG", id="btn-download",
|
| 204 |
+
style={'margin': '10px'}),
|
| 205 |
+
dcc.Download(id="download-image")
|
| 206 |
+
], style={'textAlign': 'center', 'marginTop': '20px'})
|
| 207 |
+
])
|
| 208 |
+
|
| 209 |
+
@app.callback(
|
| 210 |
+
Output("pipeline-graph", "figure"),
|
| 211 |
+
Input("graph-container", "children"),
|
| 212 |
+
prevent_initial_call=False,
|
| 213 |
+
)
|
| 214 |
+
def load_graph(_):
|
| 215 |
+
# Create the figure when the app loads
|
| 216 |
+
return create_pipeline_figure(schedule, show_progress=True)
|
| 217 |
+
|
| 218 |
+
@app.callback(
|
| 219 |
+
Output("download-image", "data"),
|
| 220 |
+
Input("btn-download", "n_clicks"),
|
| 221 |
+
prevent_initial_call=True,
|
| 222 |
+
)
|
| 223 |
+
def download_image(n_clicks):
|
| 224 |
+
# Show progress in terminal for downloads
|
| 225 |
+
fig = create_pipeline_figure(schedule, show_progress=True)
|
| 226 |
+
img_bytes = fig.to_image(format="png", scale=3)
|
| 227 |
+
return dict(
|
| 228 |
+
content=img_bytes,
|
| 229 |
+
filename="pipeline_visualization.png"
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
return app
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
def visualize_pipeline_parallelism_dash(
|
| 236 |
+
schedule: Dict[int, List[Dict]],
|
| 237 |
+
schedule_type: Literal["simple", "1f1b"] = "1f1b",
|
| 238 |
+
port: int = 8050,
|
| 239 |
+
debug: bool = False
|
| 240 |
+
):
|
| 241 |
+
"""
|
| 242 |
+
Create an interactive Dash visualization for pipeline parallelism scheduling.
|
| 243 |
+
|
| 244 |
+
Args:
|
| 245 |
+
schedule: Dictionary mapping device IDs to lists of tasks
|
| 246 |
+
schedule_type: Type of scheduling algorithm used ("simple" or "1f1b")
|
| 247 |
+
port: Port number to run the Dash app
|
| 248 |
+
debug: Whether to run the app in debug mode
|
| 249 |
+
"""
|
| 250 |
+
app = create_dash_app(schedule, schedule_type)
|
| 251 |
+
print(f"Starting Dash app on http://localhost:{port}/")
|
| 252 |
+
app.run_server(debug=debug, port=port)
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
def save_pipeline_visualization_plotly(
|
| 256 |
+
schedule: Dict[int, List[Dict]],
|
| 257 |
+
schedule_type: Literal["simple", "1f1b"] = "1f1b",
|
| 258 |
+
output_file: str = "pipeline_visualization_plotly.png",
|
| 259 |
+
):
|
| 260 |
+
"""
|
| 261 |
+
Save a static Plotly visualization of pipeline parallelism scheduling.
|
| 262 |
+
|
| 263 |
+
Args:
|
| 264 |
+
schedule: Dictionary mapping device IDs to lists of tasks
|
| 265 |
+
schedule_type: Type of scheduling algorithm used
|
| 266 |
+
output_file: Path to save the visualization
|
| 267 |
+
"""
|
| 268 |
+
print(f"Creating visualization for {len(schedule)} devices...")
|
| 269 |
+
fig = create_pipeline_figure(schedule, show_progress=True)
|
| 270 |
+
|
| 271 |
+
# Update layout for static image
|
| 272 |
+
fig.update_layout(
|
| 273 |
+
title=f"Pipeline Parallelism Visualization ({schedule_type.upper()})",
|
| 274 |
+
title_x=0.5
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
print(f"Saving image to {output_file}...")
|
| 278 |
+
# Save as image
|
| 279 |
+
fig.write_image(output_file, scale=3)
|
| 280 |
+
print(f"Visualization saved to {output_file}")
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
if __name__ == "__main__":
|
| 284 |
+
# Example usage
|
| 285 |
+
import argparse
|
| 286 |
+
from pipeline import create_1f1b_schedule
|
| 287 |
+
|
| 288 |
+
parser = argparse.ArgumentParser(description="Pipeline Parallelism Visualizer")
|
| 289 |
+
parser.add_argument("--num-stages", type=int, default=4, help="Number of pipeline stages")
|
| 290 |
+
parser.add_argument("--num-batches", type=int, default=8, help="Number of microbatches")
|
| 291 |
+
parser.add_argument("--interactive", action="store_true", help="Run interactive Dash app")
|
| 292 |
+
parser.add_argument("--port", type=int, default=8050, help="Port for Dash app")
|
| 293 |
+
parser.add_argument("--output", type=str, default="pipeline_visualization_plotly.png", help="Output file for static image")
|
| 294 |
+
args = parser.parse_args()
|
| 295 |
+
|
| 296 |
+
# Create an example schedule
|
| 297 |
+
forward_times = [1.0] * args.num_stages
|
| 298 |
+
backward_times = [2.0] * args.num_stages
|
| 299 |
+
|
| 300 |
+
schedule = create_1f1b_schedule(
|
| 301 |
+
num_stages=args.num_stages,
|
| 302 |
+
num_batches=args.num_batches,
|
| 303 |
+
forward_times=forward_times,
|
| 304 |
+
backward_times=backward_times,
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
if args.interactive:
|
| 308 |
+
visualize_pipeline_parallelism_dash(schedule, port=args.port)
|
| 309 |
+
else:
|
| 310 |
+
save_pipeline_visualization_plotly(schedule, output_file=args.output)
|
pipeline.py
CHANGED
|
@@ -9,6 +9,11 @@ from typing import List, Tuple, Dict, Literal
|
|
| 9 |
|
| 10 |
# Import visualization function from the new module
|
| 11 |
from visualizer import visualize_pipeline_parallelism
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
|
| 14 |
def create_1f1b_schedule(
|
|
@@ -210,6 +215,7 @@ def get_bubble_rate(schedule: Dict[int, List[Dict]]):
|
|
| 210 |
if end_time > max_time:
|
| 211 |
max_time = end_time
|
| 212 |
|
|
|
|
| 213 |
total_execution_time = max_time * num_stages
|
| 214 |
|
| 215 |
total_computation_time = 0
|
|
@@ -325,6 +331,9 @@ def parse_args():
|
|
| 325 |
help="Time for point-to-point communication between stages",
|
| 326 |
)
|
| 327 |
|
|
|
|
|
|
|
|
|
|
| 328 |
return parser.parse_args()
|
| 329 |
|
| 330 |
|
|
@@ -447,9 +456,24 @@ def main():
|
|
| 447 |
|
| 448 |
# Create visualization unless --no-visualization is specified
|
| 449 |
if not args.no_visualization:
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 453 |
|
| 454 |
# Analyze the schedule
|
| 455 |
bubble_rate = get_bubble_rate(schedule)
|
|
|
|
| 9 |
|
| 10 |
# Import visualization function from the new module
|
| 11 |
from visualizer import visualize_pipeline_parallelism
|
| 12 |
+
try:
|
| 13 |
+
from dash_visualizer import visualize_pipeline_parallelism_dash, save_pipeline_visualization_plotly
|
| 14 |
+
DASH_AVAILABLE = True
|
| 15 |
+
except ImportError:
|
| 16 |
+
DASH_AVAILABLE = False
|
| 17 |
|
| 18 |
|
| 19 |
def create_1f1b_schedule(
|
|
|
|
| 215 |
if end_time > max_time:
|
| 216 |
max_time = end_time
|
| 217 |
|
| 218 |
+
print(f"Max time: {max_time}")
|
| 219 |
total_execution_time = max_time * num_stages
|
| 220 |
|
| 221 |
total_computation_time = 0
|
|
|
|
| 331 |
help="Time for point-to-point communication between stages",
|
| 332 |
)
|
| 333 |
|
| 334 |
+
parser.add_argument("--visualizer", choices=["matplotlib", "dash", "dash-interactive"],
|
| 335 |
+
default="matplotlib", help="Visualization library to use")
|
| 336 |
+
|
| 337 |
return parser.parse_args()
|
| 338 |
|
| 339 |
|
|
|
|
| 456 |
|
| 457 |
# Create visualization unless --no-visualization is specified
|
| 458 |
if not args.no_visualization:
|
| 459 |
+
if args.visualizer == "matplotlib" or not DASH_AVAILABLE:
|
| 460 |
+
if not DASH_AVAILABLE and args.visualizer in ["dash", "dash-interactive"]:
|
| 461 |
+
print("Warning: Dash not available. Falling back to matplotlib.")
|
| 462 |
+
visualize_pipeline_parallelism(
|
| 463 |
+
schedule=schedule, schedule_type="1f1b", output_file=output_file
|
| 464 |
+
)
|
| 465 |
+
elif args.visualizer == "dash":
|
| 466 |
+
# Get output file name without extension to use the appropriate extension
|
| 467 |
+
output_base = os.path.splitext(output_file)[0]
|
| 468 |
+
output_dash = f"{output_base}_plotly.png"
|
| 469 |
+
save_pipeline_visualization_plotly(
|
| 470 |
+
schedule=schedule, schedule_type="1f1b", output_file=output_dash
|
| 471 |
+
)
|
| 472 |
+
elif args.visualizer == "dash-interactive":
|
| 473 |
+
print("Using Dash interactive visualization")
|
| 474 |
+
visualize_pipeline_parallelism_dash(
|
| 475 |
+
schedule=schedule, schedule_type="1f1b", port=8050, debug=False
|
| 476 |
+
)
|
| 477 |
|
| 478 |
# Analyze the schedule
|
| 479 |
bubble_rate = get_bubble_rate(schedule)
|
requirements-dash.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
dash==2.13.0
|
| 2 |
+
plotly==5.18.0
|
| 3 |
+
numpy
|
| 4 |
+
kaleido # For static image export
|
| 5 |
+
tqdm # For progress bars
|