Spaces:
Runtime error
Runtime error
| import os | |
| import pickle | |
| import numpy as np | |
| import faiss | |
| import torch | |
| from datasets import load_dataset | |
| import evaluate | |
| # Import RAG setup and retrieval logic from app.py | |
| from app import setup_rag, retrieve, retrieve_and_answer | |
| def retrieval_recall(dataset, passages, embedder, reranker, index, k=20, rerank_k=None, num_samples=100): | |
| """ | |
| Compute raw Retrieval Recall@k on the first num_samples examples. | |
| If rerank_k is set, apply cross-encoder reranking via `retrieve`. | |
| Otherwise, use the FAISS index only (top-k) without reranking. | |
| """ | |
| hits = 0 | |
| for ex in dataset.select(range(num_samples)): | |
| question = ex["question"] | |
| gold_answers = ex["answers"]["text"] | |
| if rerank_k: | |
| # use two-stage retrieval (dense + rerank) | |
| ctxs, _ = retrieve(question, passages, embedder, reranker, index, k=k, rerank_k=rerank_k) | |
| else: | |
| # single-stage: FAISS only | |
| q_emb = embedder.encode([question], convert_to_numpy=True) | |
| distances, idxs = index.search(q_emb, k) | |
| ctxs = [passages[i] for i in idxs[0]] | |
| # check if any gold answer appears in any retrieved context | |
| if any(any(ans in ctx for ctx in ctxs) for ans in gold_answers): | |
| hits += 1 | |
| recall = hits / num_samples | |
| print(f"Retrieval Recall@{k} (rerank_k={rerank_k}): {recall:.3f} ({hits}/{num_samples})") | |
| return recall | |
| def retrieval_recall_answerable(dataset, passages, embedder, reranker, index, k=20, rerank_k=None, num_samples=100): | |
| """ | |
| Retrieval Recall@k evaluated only on answerable questions (answers list non-empty). | |
| """ | |
| hits = 0 | |
| total = 0 | |
| for ex in dataset.select(range(num_samples)): | |
| gold = ex["answers"]["text"] | |
| if not gold: | |
| continue | |
| total += 1 | |
| question = ex["question"] | |
| if rerank_k: | |
| ctxs, _ = retrieve(question, passages, embedder, reranker, index, k=k, rerank_k=rerank_k) | |
| else: | |
| q_emb = embedder.encode([question], convert_to_numpy=True) | |
| distances, idxs = index.search(q_emb, k) | |
| ctxs = [passages[i] for i in idxs[0]] | |
| if any(any(ans in ctx for ctx in ctxs) for ans in gold): | |
| hits += 1 | |
| recall = hits / total if total > 0 else 0.0 | |
| print(f"Retrieval Recall@{k} on answerable only (rerank_k={rerank_k}): {recall:.3f} ({hits}/{total})") | |
| return recall | |
| def qa_eval_answerable(dataset, passages, embedder, reranker, index, qa_pipe, k=20, num_samples=100): | |
| """ | |
| End-to-end QA EM/F1 on answerable subset using retrieve_and_answer. | |
| """ | |
| squad_metric = evaluate.load("squad") | |
| preds = [] | |
| refs = [] | |
| for ex in dataset.select(range(num_samples)): | |
| gold = ex["answers"]["text"] | |
| if not gold: | |
| continue | |
| qid = ex["id"] | |
| # retrieve and generate | |
| answer, _ = retrieve_and_answer( | |
| ex["question"], passages, embedder, reranker, index, qa_pipe | |
| ) | |
| preds.append({"id": qid, "prediction_text": answer}) | |
| refs.append({"id": qid, "answers": ex["answers"]}) | |
| results = squad_metric.compute(predictions=preds, references=refs) | |
| print(f"Answerable-only QA EM: {results['exact_match']:.2f}, F1: {results['f1']:.2f}") | |
| return results | |
| def main(): | |
| # 1) Setup RAG components | |
| passages, embedder, reranker, index, qa_pipe = setup_rag() | |
| # 2) Load SQuAD v2 validation split | |
| squad = load_dataset("rajpurkar/squad_v2", split="validation") | |
| # 3) Run evaluations | |
| retrieval_recall(squad, passages, embedder, reranker, index, k=20, rerank_k=5, num_samples=100) | |
| retrieval_recall_answerable(squad, passages, embedder, reranker, index, k=20, rerank_k=5, num_samples=100) | |
| qa_eval_answerable(squad, passages, embedder, reranker, index, qa_pipe, k=20, num_samples=100) | |
| if __name__ == "__main__": | |
| main() | |