Spaces:
Runtime error
Runtime error
Create Evaluators
Browse files- Evaluators +93 -0
Evaluators
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pickle
|
| 3 |
+
import numpy as np
|
| 4 |
+
import faiss
|
| 5 |
+
import torch
|
| 6 |
+
from datasets import load_dataset
|
| 7 |
+
import evaluate
|
| 8 |
+
|
| 9 |
+
# Import RAG setup and retrieval logic from app.py
|
| 10 |
+
from app import setup_rag, retrieve
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def retrieval_recall(dataset, passages, embedder, index, k=20, rerank_k=None, num_samples=100):
|
| 14 |
+
"""
|
| 15 |
+
Compute raw Retrieval Recall@k on the first num_samples examples.
|
| 16 |
+
If rerank_k is set, also apply cross-encoder reranking.
|
| 17 |
+
"""
|
| 18 |
+
hits = 0
|
| 19 |
+
for ex in dataset.select(range(num_samples)):
|
| 20 |
+
question = ex["question"]
|
| 21 |
+
gold_answers = ex["answers"]["text"]
|
| 22 |
+
# get top-k retrieved contexts
|
| 23 |
+
if rerank_k:
|
| 24 |
+
ctxs, _ = retrieve(question, passages, embedder, index, k=k, rerank_k=rerank_k)
|
| 25 |
+
else:
|
| 26 |
+
# skip reranking: use top-k directly
|
| 27 |
+
q_emb = embedder.encode([question], convert_to_numpy=True)
|
| 28 |
+
distances, idxs = index.search(q_emb, k)
|
| 29 |
+
ctxs = [passages[i] for i in idxs[0]]
|
| 30 |
+
# check if any gold span appears
|
| 31 |
+
if any(any(ans in ctx for ctx in ctxs) for ans in gold_answers):
|
| 32 |
+
hits += 1
|
| 33 |
+
recall = hits / num_samples
|
| 34 |
+
print(f"Retrieval Recall@{k} (rerank_k={rerank_k}): {recall:.3f} ({hits}/{num_samples})")
|
| 35 |
+
return recall
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def retrieval_recall_answerable(dataset, passages, embedder, index, k=20, rerank_k=None, num_samples=100):
|
| 39 |
+
"""
|
| 40 |
+
Retrieval Recall@k evaluated only on answerable questions.
|
| 41 |
+
"""
|
| 42 |
+
hits, total = 0, 0
|
| 43 |
+
for ex in dataset.select(range(num_samples)):
|
| 44 |
+
if not ex["answers"]["text"]:
|
| 45 |
+
continue
|
| 46 |
+
total += 1
|
| 47 |
+
question = ex["question"]
|
| 48 |
+
if rerank_k:
|
| 49 |
+
ctxs, _ = retrieve(question, passages, embedder, index, k=k, rerank_k=rerank_k)
|
| 50 |
+
else:
|
| 51 |
+
q_emb = embedder.encode([question], convert_to_numpy=True)
|
| 52 |
+
distances, idxs = index.search(q_emb, k)
|
| 53 |
+
ctxs = [passages[i] for i in idxs[0]]
|
| 54 |
+
if any(any(ans in ctx for ctx in ctxs) for ans in ex["answers"]["text"]):
|
| 55 |
+
hits += 1
|
| 56 |
+
recall = hits / total if total > 0 else 0.0
|
| 57 |
+
print(f"Retrieval Recall@{k} on answerable only (rerank_k={rerank_k}): {recall:.3f} ({hits}/{total})")
|
| 58 |
+
return recall
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def qa_eval_answerable(dataset, passages, embedder, reranker, index, qa_pipe, k=20, num_samples=100):
|
| 62 |
+
"""
|
| 63 |
+
End-to-end QA EM/F1 on answerable subset using the retrieve_and_answer logic.
|
| 64 |
+
"""
|
| 65 |
+
squad_metric = evaluate.load("squad")
|
| 66 |
+
preds, refs = [], []
|
| 67 |
+
for ex in dataset.select(range(num_samples)):
|
| 68 |
+
if not ex["answers"]["text"]:
|
| 69 |
+
continue
|
| 70 |
+
qid = ex["id"]
|
| 71 |
+
# retrieve and generate
|
| 72 |
+
answer, _ = retrieve_and_answer(ex["question"], passages, embedder, reranker, index, qa_pipe)
|
| 73 |
+
preds.append({"id": qid, "prediction_text": answer})
|
| 74 |
+
refs.append({"id": qid, "answers": ex["answers"]})
|
| 75 |
+
results = squad_metric.compute(predictions=preds, references=refs)
|
| 76 |
+
print(f"Answerable-only QA EM: {results['exact_match']:.2f}, F1: {results['f1']:.2f}")
|
| 77 |
+
return results
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def main():
|
| 81 |
+
# Setup RAG components
|
| 82 |
+
passages, embedder, reranker, index, qa_pipe = setup_rag()
|
| 83 |
+
# Load SQuAD v2 validation set
|
| 84 |
+
squad = load_dataset("rajpurkar/squad_v2", split="validation")
|
| 85 |
+
|
| 86 |
+
# Run evaluations
|
| 87 |
+
retrieval_recall(squad, passages, embedder, index, k=20, rerank_k=5, num_samples=100)
|
| 88 |
+
retrieval_recall_answerable(squad, passages, embedder, index, k=20, rerank_k=5, num_samples=100)
|
| 89 |
+
qa_eval_answerable(squad, passages, embedder, reranker, index, qa_pipe, k=20, num_samples=100)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
if __name__ == "__main__":
|
| 93 |
+
main()
|