Spaces:
Runtime error
Runtime error
| import torch | |
| from PIL import Image | |
| import requests | |
| import gradio as gr | |
| from transformers import AlignProcessor, AlignModel | |
| processor = AlignProcessor.from_pretrained("kakaobrain/align-base") | |
| model = AlignModel.from_pretrained("kakaobrain/align-base") | |
| def get_image_alignment_probabilities(image, is_url): | |
| candidate_labels = ["advertisement", "not an advertisement"] | |
| # Load image from URL or locally | |
| if is_url: | |
| image = Image.open(requests.get(image, stream=True).raw).convert("RGB") | |
| else: | |
| image = Image.open(image).convert("RGB") | |
| # Process inputs | |
| inputs = processor(text=candidate_labels, images=image, return_tensors="pt") | |
| # Compute outputs | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| # Extract logits per image | |
| logits_per_image = outputs.logits_per_image | |
| # Compute label probabilities using softmax | |
| probs = logits_per_image.softmax(dim=1) | |
| return {label: prob.item() for label, prob in zip(candidate_labels, probs[0])} | |
| iface = gr.Interface(fn=get_image_alignment_probabilities, | |
| inputs=[gr.Image(type='filepath', label="Upload Image"), "checkbox"], | |
| outputs="label") | |
| iface.launch() | |