Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- Align_myself.py +40 -0
- requirements.txt +3 -0
Align_myself.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
import torch
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from transformers import AlignProcessor, AlignModel
|
| 5 |
+
import gradio as gr
|
| 6 |
+
|
| 7 |
+
processor = AlignProcessor.from_pretrained("kakaobrain/align-base")
|
| 8 |
+
model = AlignModel.from_pretrained("kakaobrain/align-base")
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def get_image_alignment_probabilities(url, is_url):
|
| 12 |
+
candidate_labels = ["advertisement", "not an advertisement"]
|
| 13 |
+
|
| 14 |
+
# Load image from URL
|
| 15 |
+
if is_url:
|
| 16 |
+
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
|
| 17 |
+
else:
|
| 18 |
+
image = Image.open(url).convert("RGB")
|
| 19 |
+
|
| 20 |
+
# Process inputs
|
| 21 |
+
inputs = processor(text=candidate_labels, images=image, return_tensors="pt")
|
| 22 |
+
|
| 23 |
+
# Compute outputs
|
| 24 |
+
with torch.no_grad():
|
| 25 |
+
outputs = model(**inputs)
|
| 26 |
+
|
| 27 |
+
# Extract logits per image
|
| 28 |
+
logits_per_image = outputs.logits_per_image
|
| 29 |
+
|
| 30 |
+
# Compute label probabilities using softmax
|
| 31 |
+
probs = logits_per_image.softmax(dim=1)
|
| 32 |
+
|
| 33 |
+
return {label: prob.item() for label, prob in zip(candidate_labels, probs[0])}
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
iface = gr.Interface(fn=get_image_alignment_probabilities,
|
| 37 |
+
inputs=["text", "checkbox"],
|
| 38 |
+
outputs="label")
|
| 39 |
+
iface.launch()
|
| 40 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|
| 3 |
+
gradio
|