Spaces:
Sleeping
Sleeping
File size: 10,440 Bytes
f783161 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
# import sys
# sys.path.append("..")
import torch
from torch import nn
import torch.nn.init as init
import torch.nn.functional as F
from paths import *
from typing import Dict, List, Optional, Set, Tuple, Union
import os
from contextlib import nullcontext
from vggt.models.vggt import VGGT
from vggt.utils.pose_enc import pose_encoding_to_extri_intri
from vggt.layers import Mlp
from vggt.layers.block import Block
from vggt.heads.head_act import activate_pose
class OriAny_CameraHead(nn.Module):
"""
CameraHead predicts camera parameters from token representations using iterative refinement.
It applies a series of transformer blocks (the "trunk") to dedicated camera tokens.
"""
def __init__(
self,
dim_in: int = 2048,
trunk_depth: int = 4,
pose_encoding_type: str = "OriAny",
num_heads: int = 16,
mlp_ratio: int = 4,
init_values: float = 0.01,
):
super().__init__()
if pose_encoding_type == "OriAny":
self.target_dim = 360+180+360+2
else:
raise ValueError(f"Unsupported camera encoding type: {pose_encoding_type}")
self.trunk_depth = trunk_depth
# Build the trunk using a sequence of transformer blocks.
self.trunk = nn.Sequential(
*[
Block(
dim=dim_in,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
init_values=init_values,
)
for _ in range(trunk_depth)
]
)
# Normalizations for camera token and trunk output.
self.token_norm = nn.LayerNorm(dim_in)
self.trunk_norm = nn.LayerNorm(dim_in)
# Learnable empty camera pose token.
self.empty_pose_tokens = nn.Parameter(torch.zeros(1, 1, self.target_dim))
self.embed_pose = nn.Linear(self.target_dim, dim_in)
# Module for producing modulation parameters: shift, scale, and a gate.
self.poseLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(dim_in, 3 * dim_in, bias=True))
# Adaptive layer normalization without affine parameters.
self.adaln_norm = nn.LayerNorm(dim_in, elementwise_affine=False, eps=1e-6)
self.pose_branch = Mlp(
in_features=dim_in,
hidden_features=dim_in // 2,
out_features=self.target_dim,
drop=0,
)
def forward(self, aggregated_tokens_list: list, num_iterations: int = 4) -> list:
"""
Forward pass to predict camera parameters.
Args:
aggregated_tokens_list (list): List of token tensors from the network;
the last tensor is used for prediction.
num_iterations (int, optional): Number of iterative refinement steps. Defaults to 4.
Returns:
list: A list of predicted camera encodings (post-activation) from each iteration.
"""
# Use tokens from the last block for camera prediction.
tokens = aggregated_tokens_list[-1]
# Extract the camera tokens
pose_tokens = tokens[:, :, 0]
pose_tokens = self.token_norm(pose_tokens)
pred_pose_enc_list = self.trunk_fn(pose_tokens, num_iterations)
return pred_pose_enc_list
def trunk_fn(self, pose_tokens: torch.Tensor, num_iterations: int) -> list:
"""
Iteratively refine camera pose predictions.
Args:
pose_tokens (torch.Tensor): Normalized camera tokens with shape [B, 1, C].
num_iterations (int): Number of refinement iterations.
Returns:
list: List of activated camera encodings from each iteration.
"""
B, S, C = pose_tokens.shape # S is expected to be 1.
pred_pose_enc = None
pred_pose_enc_list = []
for _ in range(num_iterations):
# Use a learned empty pose for the first iteration.
if pred_pose_enc is None:
module_input = self.embed_pose(self.empty_pose_tokens.expand(B, S, -1))
else:
# Detach the previous prediction to avoid backprop through time.
pred_pose_enc = pred_pose_enc.detach()
module_input = self.embed_pose(pred_pose_enc)
# Generate modulation parameters and split them into shift, scale, and gate components.
shift_msa, scale_msa, gate_msa = self.poseLN_modulation(module_input).chunk(3, dim=-1)
# Adaptive layer normalization and modulation.
pose_tokens_modulated = gate_msa * modulate(self.adaln_norm(pose_tokens), shift_msa, scale_msa)
pose_tokens_modulated = pose_tokens_modulated + pose_tokens
pose_tokens_modulated = self.trunk(pose_tokens_modulated)
# Compute the delta update for the pose encoding.
pred_pose_enc_delta = self.pose_branch(self.trunk_norm(pose_tokens_modulated))
if pred_pose_enc is None:
pred_pose_enc = pred_pose_enc_delta
else:
pred_pose_enc = pred_pose_enc + pred_pose_enc_delta
# Apply final activation functions for translation, quaternion, and field-of-view.
# activated_pose = activate_pose(
# pred_pose_enc,
# trans_act=self.trans_act,
# quat_act=self.quat_act,
# fl_act=self.fl_act,
# )
# pred_pose_enc_list.append(activated_pose)
pred_pose_enc_list.append(pred_pose_enc)
return pred_pose_enc_list
def modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor) -> torch.Tensor:
"""
Modulate the input tensor using scaling and shifting parameters.
"""
# modified from https://github.com/facebookresearch/DiT/blob/796c29e532f47bba17c5b9c5eb39b9354b8b7c64/models.py#L19
return x * (1 + scale) + shift
def load_patch_embed_weights(model, checkpoint_path):
# 1. 加载 checkpoint
checkpoint = torch.load(checkpoint_path, map_location="cpu")
# 2. 获取 state_dict
state_dict = checkpoint.get("state_dict", checkpoint)
# 3. 过滤只包含 aggregator.patch_embed 的参数
patch_embed_state = {
k.replace("aggregator.patch_embed.", ""): v
for k, v in state_dict.items()
if k.startswith("aggregator.patch_embed.")
}
# 4. 加载到目标模块
missing_keys, unexpected_keys = model.aggregator.patch_embed.load_state_dict(
patch_embed_state, strict=False
)
print("Loaded patch_embed weights.")
print("Missing keys:", missing_keys)
print("Unexpected keys:", unexpected_keys)
class VGGT_OriAny_Ref(nn.Module):
def __init__(self,
dtype,
out_dim,
nopretrain
) -> None:
super().__init__()
self.vggt = VGGT()
self.dtype = dtype
self.ref_sampler = MLP_dim(in_dim=2048, out_dim=out_dim)
self.ref_sampler.apply(init_weights)
self.tgt_sampler = MLP_dim(in_dim=2048, out_dim=out_dim)
self.tgt_sampler.apply(init_weights)
def forward(self, img_inputs):
device = self.get_device()
with torch.amp.autocast(device_type='cuda', dtype=self.dtype):
if img_inputs.shape == 4:
img_inputs = img_inputs[None]
aggregated_tokens_list, ps_idx = self.vggt.aggregator(img_inputs)
# Predict Cameras
# pose_enc = self.oriany_camera_head(aggregated_tokens_list)[-1]
# Extrinsic and intrinsic matrices, following OpenCV convention (camera from world)
# extrinsic, intrinsic = pose_encoding_to_extri_intri(pose_enc, images.shape[-2:])
# Use tokens from the last block for camera prediction.
tokens = aggregated_tokens_list[-1]
# Extract the camera tokens
pose_tokens = tokens[:, :, 0]
# tokens = aggregated_tokens_list[-1]
B, S, C = pose_tokens.shape
if S>1:
# 分离每个 batch 的第一个 token 和其余 token
ref_tokens = pose_tokens[:, 0, :] # shape: (B, C)
tgt_tokens = pose_tokens[:, 1:, :] # shape: (B, S-1, C)
# 下采样
ref_feat = self.ref_sampler(ref_tokens) # shape: (B, C'),假设输出 channel 为 C'
tgt_feat = self.tgt_sampler(tgt_tokens.reshape(B * (S - 1), C)) # shape: (B*(S-1), C')
# 合并结果
pose_enc = torch.cat([
ref_feat.unsqueeze(1), # (B, 1, C')
tgt_feat.view(B, S - 1, -1) # (B, S-1, C')
], dim=1) # 最终 shape: (B*S, C')
else:
pose_enc = self.ref_sampler(pose_tokens.view(B*S,C))
return pose_enc
def get_device(self):
return next(self.parameters()).device
def init_weights(m):
if isinstance(m, nn.Linear):
init.xavier_uniform_(m.weight)
if m.bias is not None:
init.constant_(m.bias, 0)
def get_activation(activation):
if activation.lower() == 'gelu':
return nn.GELU()
elif activation.lower() == 'rrelu':
return nn.RReLU(inplace=True)
elif activation.lower() == 'selu':
return nn.SELU(inplace=True)
elif activation.lower() == 'silu':
return nn.SiLU(inplace=True)
elif activation.lower() == 'hardswish':
return nn.Hardswish(inplace=True)
elif activation.lower() == 'leakyrelu':
return nn.LeakyReLU(inplace=True)
elif activation.lower() == 'sigmoid':
return nn.Sigmoid()
elif activation.lower() == 'tanh':
return nn.Tanh()
else:
return nn.ReLU(inplace=True)
class MLP_dim(nn.Module):
def __init__(
self, in_dim=512, out_dim=1024, bias=True, activation='relu'):
super().__init__()
self.act = get_activation(activation)
self.net1 = nn.Sequential(
nn.Linear(in_dim, int(out_dim), bias=bias),
nn.BatchNorm1d(int(out_dim)),
self.act
)
self.net2 = nn.Sequential(
nn.Linear(int(out_dim), out_dim, bias=bias),
nn.BatchNorm1d(out_dim)
)
def forward(self, x):
return self.net2(self.net1(x))
|