Orient-Anything-V2 / app_utils.py
zhangziang
initial commit track binary
f783161
raw
history blame
6.47 kB
import rembg
import random
import torch
import numpy as np
from PIL import Image, ImageOps
import PIL
from typing import Any
import matplotlib.pyplot as plt
import io
def resize_foreground(
image: Image,
ratio: float,
) -> Image:
image = np.array(image)
assert image.shape[-1] == 4
alpha = np.where(image[..., 3] > 0)
y1, y2, x1, x2 = (
alpha[0].min(),
alpha[0].max(),
alpha[1].min(),
alpha[1].max(),
)
# crop the foreground
fg = image[y1:y2, x1:x2]
# pad to square
size = max(fg.shape[0], fg.shape[1])
ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
new_image = np.pad(
fg,
((ph0, ph1), (pw0, pw1), (0, 0)),
mode="constant",
constant_values=((0, 0), (0, 0), (0, 0)),
)
# compute padding according to the ratio
new_size = int(new_image.shape[0] / ratio)
# pad to size, double side
ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
ph1, pw1 = new_size - size - ph0, new_size - size - pw0
new_image = np.pad(
new_image,
((ph0, ph1), (pw0, pw1), (0, 0)),
mode="constant",
constant_values=((0, 0), (0, 0), (0, 0)),
)
new_image = Image.fromarray(new_image)
return new_image
def remove_background(image: Image,
rembg_session: Any = None,
force: bool = False,
**rembg_kwargs,
) -> Image:
do_remove = True
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
do_remove = False
do_remove = do_remove or force
if do_remove:
image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
return image
def background_preprocess(input_image, do_remove_background):
if input_image is None:
return None
rembg_session = rembg.new_session() if do_remove_background else None
if do_remove_background:
input_image = remove_background(input_image, rembg_session)
input_image = resize_foreground(input_image, 0.85)
return input_image
def axis_angle_rotation_batch(axis: torch.Tensor, theta: torch.Tensor, homogeneous: bool = False) -> torch.Tensor:
"""
支持batch输入的版本:
Args:
axis: (3,) or (N,3)
theta: scalar or (N,)
homogeneous: 是否输出 4x4 齐次矩阵
Returns:
(N,3,3) or (N,4,4)
"""
axis = torch.as_tensor(axis).float()
theta = torch.as_tensor(theta).float()
if axis.ndim == 1:
axis = axis.unsqueeze(0) # (1,3)
if theta.ndim == 0:
theta = theta.unsqueeze(0) # (1,)
N = axis.shape[0]
# normalize axis
axis = axis / torch.norm(axis, dim=1, keepdim=True)
x, y, z = axis[:, 0], axis[:, 1], axis[:, 2]
cos_t = torch.cos(theta)
sin_t = torch.sin(theta)
one_minus_cos = 1 - cos_t
# 公式展开
rot = torch.zeros((N, 3, 3), dtype=axis.dtype, device=axis.device)
rot[:, 0, 0] = cos_t + x*x*one_minus_cos
rot[:, 0, 1] = x*y*one_minus_cos - z*sin_t
rot[:, 0, 2] = x*z*one_minus_cos + y*sin_t
rot[:, 1, 0] = y*x*one_minus_cos + z*sin_t
rot[:, 1, 1] = cos_t + y*y*one_minus_cos
rot[:, 1, 2] = y*z*one_minus_cos - x*sin_t
rot[:, 2, 0] = z*x*one_minus_cos - y*sin_t
rot[:, 2, 1] = z*y*one_minus_cos + x*sin_t
rot[:, 2, 2] = cos_t + z*z*one_minus_cos
if homogeneous:
rot_homo = torch.eye(4, dtype=axis.dtype, device=axis.device).unsqueeze(0).repeat(N, 1, 1)
rot_homo[:, :3, :3] = rot
return rot_homo
return rot
def azi_ele_rot_to_Obj_Rmatrix_batch(azi: torch.Tensor, ele: torch.Tensor, rot: torch.Tensor) -> torch.Tensor:
"""支持batch输入的: (azi, ele, rot) -> R matrix (N,3,3)"""
# 转成tensor
azi = torch.as_tensor(azi).float() * torch.pi / 180.
ele = torch.as_tensor(ele).float() * torch.pi / 180.
rot = torch.as_tensor(rot).float() * torch.pi / 180.
# 保证有batch维度
if azi.ndim == 0:
azi = azi.unsqueeze(0)
if ele.ndim == 0:
ele = ele.unsqueeze(0)
if rot.ndim == 0:
rot = rot.unsqueeze(0)
N = azi.shape[0]
device = azi.device
dtype = azi.dtype
z0_axis = torch.tensor([0.,0.,1.], device=device, dtype=dtype).expand(N, -1)
y0_axis = torch.tensor([0.,1.,0.], device=device, dtype=dtype).expand(N, -1)
x0_axis = torch.tensor([1.,0.,0.], device=device, dtype=dtype).expand(N, -1)
# print(z0_axis.shape, azi.shape)
R_azi = axis_angle_rotation_batch(z0_axis, -1 * azi)
R_ele = axis_angle_rotation_batch(y0_axis, ele)
R_rot = axis_angle_rotation_batch(x0_axis, rot)
R_res = R_rot @ R_ele @ R_azi
return R_res
def Cam_Rmatrix_to_azi_ele_rot_batch(R: torch.Tensor):
"""支持batch输入的: R matrix -> (azi, ele, rot),角度制 (度)"""
R = torch.as_tensor(R).float()
# 如果是(3,3),补batch维度
if R.ndim == 2:
R = R.unsqueeze(0)
r0 = R[:, :, 0] # shape (N,3)
r1 = R[:, :, 1]
r2 = R[:, :, 2]
ele = torch.asin(r0[:, 2]) # r0.z
cos_ele = torch.cos(ele)
# 创建默认azi、rot
azi = torch.zeros_like(ele)
rot = torch.zeros_like(ele)
# 正常情况
normal_mask = (cos_ele.abs() >= 1e-6)
if normal_mask.any():
azi[normal_mask] = torch.atan2(r0[normal_mask, 1], r0[normal_mask, 0])
rot[normal_mask] = torch.atan2(-r1[normal_mask, 2], r2[normal_mask, 2])
# Gimbal lock特殊情况
gimbal_mask = ~normal_mask
if gimbal_mask.any():
# 这里设azi为0
azi[gimbal_mask] = 0.0
rot[gimbal_mask] = torch.atan2(-r1[gimbal_mask, 0], r1[gimbal_mask, 1])
# 弧度转角度
azi = azi * 180. / torch.pi
ele = ele * 180. / torch.pi
rot = rot * 180. / torch.pi
return azi, ele, rot
def Get_target_azi_ele_rot(azi: torch.Tensor, ele: torch.Tensor, rot: torch.Tensor, rel_azi: torch.Tensor, rel_ele: torch.Tensor, rel_rot: torch.Tensor):
Rmat0 = azi_ele_rot_to_Obj_Rmatrix_batch(azi = azi , ele = ele , rot = rot)
Rmat_rel = azi_ele_rot_to_Obj_Rmatrix_batch(azi = rel_azi, ele = rel_ele, rot = rel_rot)
# Rmat_rel = Rmat1 @ Rmat0.permute(0, 2, 1)
# azi_out, ele_out, rot_out = Cam_Rmatrix_to_azi_ele_rot_batch(Rmat_rel.permute(0, 2, 1))
Rmat1 = Rmat_rel @ Rmat0
azi_out, ele_out, rot_out = Cam_Rmatrix_to_azi_ele_rot_batch(Rmat1.permute(0, 2, 1))
return azi_out, ele_out, rot_out