Spaces:
Running
Running
zhang-ziang
commited on
Commit
·
738bdfa
1
Parent(s):
0366edb
render axis
Browse files
app.py
CHANGED
|
@@ -8,11 +8,9 @@ import os
|
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
import io
|
| 10 |
from PIL import Image
|
| 11 |
-
import random
|
| 12 |
-
import rembg
|
| 13 |
-
from typing import Any
|
| 14 |
-
import torch.nn.functional as F
|
| 15 |
|
|
|
|
|
|
|
| 16 |
|
| 17 |
from huggingface_hub import hf_hub_download
|
| 18 |
ckpt_path = hf_hub_download(repo_id="Viglong/OriNet", filename="celarge/dino_weight.pt", repo_type="model", cache_dir='./', resume_download=True)
|
|
@@ -35,99 +33,6 @@ dino.load_state_dict(torch.load(ckpt_path, map_location='cpu'))
|
|
| 35 |
print('weight loaded')
|
| 36 |
val_preprocess = AutoImageProcessor.from_pretrained(DINO_LARGE, cache_dir='./')
|
| 37 |
|
| 38 |
-
def background_preprocess(input_image, do_remove_background):
|
| 39 |
-
|
| 40 |
-
rembg_session = rembg.new_session() if do_remove_background else None
|
| 41 |
-
|
| 42 |
-
if do_remove_background:
|
| 43 |
-
input_image = remove_background(input_image, rembg_session)
|
| 44 |
-
input_image = resize_foreground(input_image, 0.85)
|
| 45 |
-
|
| 46 |
-
return input_image
|
| 47 |
-
|
| 48 |
-
def resize_foreground(
|
| 49 |
-
image: Image,
|
| 50 |
-
ratio: float,
|
| 51 |
-
) -> Image:
|
| 52 |
-
image = np.array(image)
|
| 53 |
-
assert image.shape[-1] == 4
|
| 54 |
-
alpha = np.where(image[..., 3] > 0)
|
| 55 |
-
y1, y2, x1, x2 = (
|
| 56 |
-
alpha[0].min(),
|
| 57 |
-
alpha[0].max(),
|
| 58 |
-
alpha[1].min(),
|
| 59 |
-
alpha[1].max(),
|
| 60 |
-
)
|
| 61 |
-
# crop the foreground
|
| 62 |
-
fg = image[y1:y2, x1:x2]
|
| 63 |
-
# pad to square
|
| 64 |
-
size = max(fg.shape[0], fg.shape[1])
|
| 65 |
-
ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
|
| 66 |
-
ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
|
| 67 |
-
new_image = np.pad(
|
| 68 |
-
fg,
|
| 69 |
-
((ph0, ph1), (pw0, pw1), (0, 0)),
|
| 70 |
-
mode="constant",
|
| 71 |
-
constant_values=((0, 0), (0, 0), (0, 0)),
|
| 72 |
-
)
|
| 73 |
-
|
| 74 |
-
# compute padding according to the ratio
|
| 75 |
-
new_size = int(new_image.shape[0] / ratio)
|
| 76 |
-
# pad to size, double side
|
| 77 |
-
ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
|
| 78 |
-
ph1, pw1 = new_size - size - ph0, new_size - size - pw0
|
| 79 |
-
new_image = np.pad(
|
| 80 |
-
new_image,
|
| 81 |
-
((ph0, ph1), (pw0, pw1), (0, 0)),
|
| 82 |
-
mode="constant",
|
| 83 |
-
constant_values=((0, 0), (0, 0), (0, 0)),
|
| 84 |
-
)
|
| 85 |
-
new_image = Image.fromarray(new_image)
|
| 86 |
-
return new_image
|
| 87 |
-
|
| 88 |
-
def remove_background(image: Image,
|
| 89 |
-
rembg_session: Any = None,
|
| 90 |
-
force: bool = False,
|
| 91 |
-
**rembg_kwargs,
|
| 92 |
-
) -> Image:
|
| 93 |
-
do_remove = True
|
| 94 |
-
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
|
| 95 |
-
do_remove = False
|
| 96 |
-
do_remove = do_remove or force
|
| 97 |
-
if do_remove:
|
| 98 |
-
image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
|
| 99 |
-
return image
|
| 100 |
-
|
| 101 |
-
def random_crop(image, crop_scale=(0.8, 0.95)):
|
| 102 |
-
"""
|
| 103 |
-
随机裁切图片
|
| 104 |
-
image (numpy.ndarray): (H, W, C)。
|
| 105 |
-
crop_scale (tuple): (min_scale, max_scale)。
|
| 106 |
-
"""
|
| 107 |
-
assert isinstance(image, Image.Image), "iput must be PIL.Image.Image"
|
| 108 |
-
assert len(crop_scale) == 2 and 0 < crop_scale[0] <= crop_scale[1] <= 1
|
| 109 |
-
|
| 110 |
-
width, height = image.size
|
| 111 |
-
|
| 112 |
-
# 计算裁切的高度和宽度
|
| 113 |
-
crop_width = random.randint(int(width * crop_scale[0]), int(width * crop_scale[1]))
|
| 114 |
-
crop_height = random.randint(int(height * crop_scale[0]), int(height * crop_scale[1]))
|
| 115 |
-
|
| 116 |
-
# 随机选择裁切的起始点
|
| 117 |
-
left = random.randint(0, width - crop_width)
|
| 118 |
-
top = random.randint(0, height - crop_height)
|
| 119 |
-
|
| 120 |
-
# 裁切图片
|
| 121 |
-
cropped_image = image.crop((left, top, left + crop_width, top + crop_height))
|
| 122 |
-
|
| 123 |
-
return cropped_image
|
| 124 |
-
|
| 125 |
-
def get_crop_images(img, num=3):
|
| 126 |
-
cropped_images = []
|
| 127 |
-
for i in range(num):
|
| 128 |
-
cropped_images.append(random_crop(img))
|
| 129 |
-
return cropped_images
|
| 130 |
-
|
| 131 |
|
| 132 |
def get_3angle(image):
|
| 133 |
|
|
@@ -148,68 +53,6 @@ def get_3angle(image):
|
|
| 148 |
angles[3] = confidence
|
| 149 |
return angles
|
| 150 |
|
| 151 |
-
def remove_outliers_and_average(tensor, threshold=1.5):
|
| 152 |
-
assert tensor.dim() == 1, "dimension of input Tensor must equal to 1"
|
| 153 |
-
|
| 154 |
-
q1 = torch.quantile(tensor, 0.25)
|
| 155 |
-
q3 = torch.quantile(tensor, 0.75)
|
| 156 |
-
iqr = q3 - q1
|
| 157 |
-
|
| 158 |
-
lower_bound = q1 - threshold * iqr
|
| 159 |
-
upper_bound = q3 + threshold * iqr
|
| 160 |
-
|
| 161 |
-
non_outliers = tensor[(tensor >= lower_bound) & (tensor <= upper_bound)]
|
| 162 |
-
|
| 163 |
-
if len(non_outliers) == 0:
|
| 164 |
-
return tensor.mean().item()
|
| 165 |
-
|
| 166 |
-
return non_outliers.mean().item()
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
def remove_outliers_and_average_circular(tensor, threshold=1.5):
|
| 170 |
-
assert tensor.dim() == 1, "dimension of input Tensor must equal to 1"
|
| 171 |
-
|
| 172 |
-
# 将角度转换为二维平面上的点
|
| 173 |
-
radians = tensor * torch.pi / 180.0
|
| 174 |
-
x_coords = torch.cos(radians)
|
| 175 |
-
y_coords = torch.sin(radians)
|
| 176 |
-
|
| 177 |
-
# 计算平均向量
|
| 178 |
-
mean_x = torch.mean(x_coords)
|
| 179 |
-
mean_y = torch.mean(y_coords)
|
| 180 |
-
|
| 181 |
-
differences = torch.sqrt((x_coords - mean_x) * (x_coords - mean_x) + (y_coords - mean_y) * (y_coords - mean_y))
|
| 182 |
-
|
| 183 |
-
# 计算四分位数和 IQR
|
| 184 |
-
q1 = torch.quantile(differences, 0.25)
|
| 185 |
-
q3 = torch.quantile(differences, 0.75)
|
| 186 |
-
iqr = q3 - q1
|
| 187 |
-
|
| 188 |
-
# 计算上下限
|
| 189 |
-
lower_bound = q1 - threshold * iqr
|
| 190 |
-
upper_bound = q3 + threshold * iqr
|
| 191 |
-
|
| 192 |
-
# 筛选非离群点
|
| 193 |
-
non_outliers = tensor[(differences >= lower_bound) & (differences <= upper_bound)]
|
| 194 |
-
|
| 195 |
-
if len(non_outliers) == 0:
|
| 196 |
-
mean_angle = torch.atan2(mean_y, mean_x) * 180.0 / torch.pi
|
| 197 |
-
mean_angle = (mean_angle + 360) % 360
|
| 198 |
-
return mean_angle # 如果没有非离群点,返回 None
|
| 199 |
-
|
| 200 |
-
# 对非离群点再次计算平均向量
|
| 201 |
-
radians = non_outliers * torch.pi / 180.0
|
| 202 |
-
x_coords = torch.cos(radians)
|
| 203 |
-
y_coords = torch.sin(radians)
|
| 204 |
-
|
| 205 |
-
mean_x = torch.mean(x_coords)
|
| 206 |
-
mean_y = torch.mean(y_coords)
|
| 207 |
-
|
| 208 |
-
mean_angle = torch.atan2(mean_y, mean_x) * 180.0 / torch.pi
|
| 209 |
-
mean_angle = (mean_angle + 360) % 360
|
| 210 |
-
|
| 211 |
-
return mean_angle
|
| 212 |
-
|
| 213 |
def get_3angle_infer_aug(origin_img, rm_bkg_img):
|
| 214 |
|
| 215 |
# image = Image.open(image_path).convert('RGB')
|
|
@@ -235,29 +78,6 @@ def get_3angle_infer_aug(origin_img, rm_bkg_img):
|
|
| 235 |
angles[3] = confidence
|
| 236 |
return angles
|
| 237 |
|
| 238 |
-
def scale(x):
|
| 239 |
-
# print(x)
|
| 240 |
-
# if abs(x[0])<0.1 and abs(x[1])<0.1:
|
| 241 |
-
|
| 242 |
-
# return x*5
|
| 243 |
-
# else:
|
| 244 |
-
# return x
|
| 245 |
-
return x*3
|
| 246 |
-
|
| 247 |
-
def get_proj2D_XYZ(phi, theta, gamma):
|
| 248 |
-
x = np.array([-1*np.sin(phi)*np.cos(gamma) - np.cos(phi)*np.sin(theta)*np.sin(gamma), np.sin(phi)*np.sin(gamma) - np.cos(phi)*np.sin(theta)*np.cos(gamma)])
|
| 249 |
-
y = np.array([-1*np.cos(phi)*np.cos(gamma) + np.sin(phi)*np.sin(theta)*np.sin(gamma), np.cos(phi)*np.sin(gamma) + np.sin(phi)*np.sin(theta)*np.cos(gamma)])
|
| 250 |
-
z = np.array([np.cos(theta)*np.sin(gamma), np.cos(theta)*np.cos(gamma)])
|
| 251 |
-
x = scale(x)
|
| 252 |
-
y = scale(y)
|
| 253 |
-
z = scale(z)
|
| 254 |
-
return x, y, z
|
| 255 |
-
|
| 256 |
-
# 绘制3D坐标轴
|
| 257 |
-
def draw_axis(ax, origin, vector, color, label=None):
|
| 258 |
-
ax.quiver(origin[0], origin[1], vector[0], vector[1], angles='xy', scale_units='xy', scale=1, color=color)
|
| 259 |
-
if label!=None:
|
| 260 |
-
ax.text(origin[0] + vector[0] * 1.1, origin[1] + vector[1] * 1.1, label, color=color, fontsize=12)
|
| 261 |
|
| 262 |
def figure_to_img(fig):
|
| 263 |
with io.BytesIO() as buf:
|
|
@@ -275,52 +95,14 @@ def infer_func(img, do_rm_bkg, do_infer_aug):
|
|
| 275 |
rm_bkg_img = background_preprocess(origin_img, do_rm_bkg)
|
| 276 |
angles = get_3angle(rm_bkg_img)
|
| 277 |
|
| 278 |
-
fig, ax = plt.subplots(figsize=(8, 8))
|
| 279 |
-
|
| 280 |
-
w, h = rm_bkg_img.size
|
| 281 |
-
if h>w:
|
| 282 |
-
extent = [-5*w/h, 5*w/h, -5, 5]
|
| 283 |
-
else:
|
| 284 |
-
extent = [-5, 5, -5*h/w, 5*h/w]
|
| 285 |
-
ax.imshow(rm_bkg_img, extent=extent, zorder=0, aspect ='auto') # extent 设置图片的显示范围
|
| 286 |
-
|
| 287 |
-
origin = np.array([0, 0])
|
| 288 |
-
|
| 289 |
-
# # 设置旋转角度
|
| 290 |
phi = np.radians(angles[0])
|
| 291 |
theta = np.radians(angles[1])
|
| 292 |
-
gamma =
|
| 293 |
-
|
| 294 |
-
# 旋转后的向量
|
| 295 |
-
rot_x, rot_y, rot_z = get_proj2D_XYZ(phi, theta, gamma)
|
| 296 |
-
|
| 297 |
-
# draw arrow
|
| 298 |
-
arrow_attr = [{'point':rot_x, 'color':'r', 'label':'front'},
|
| 299 |
-
{'point':rot_y, 'color':'g', 'label':'right'},
|
| 300 |
-
{'point':rot_z, 'color':'b', 'label':'top'}]
|
| 301 |
|
| 302 |
-
if phi> 45 and phi<=225:
|
| 303 |
-
order = [0,1,2]
|
| 304 |
-
elif phi > 225 and phi < 315:
|
| 305 |
-
order = [2,0,1]
|
| 306 |
-
else:
|
| 307 |
-
order = [2,1,0]
|
| 308 |
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
# draw_axis(ax, origin, rot_y, 'g', label='right')
|
| 312 |
-
# draw_axis(ax, origin, rot_z, 'b', label='top')
|
| 313 |
-
# draw_axis(ax, origin, rot_x, 'r', label='front')
|
| 314 |
-
|
| 315 |
-
# 关闭坐标轴和网格
|
| 316 |
-
ax.set_axis_off()
|
| 317 |
-
ax.grid(False)
|
| 318 |
-
|
| 319 |
-
# 设置坐标范围
|
| 320 |
-
ax.set_xlim(-5, 5)
|
| 321 |
-
ax.set_ylim(-5, 5)
|
| 322 |
|
| 323 |
-
res_img = figure_to_img(fig)
|
| 324 |
# axis_model = "axis.obj"
|
| 325 |
return [res_img, round(float(angles[0]), 2), round(float(angles[1]), 2), round(float(angles[2]), 2), round(float(angles[3]), 2)]
|
| 326 |
|
|
|
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
import io
|
| 10 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
from utils import *
|
| 14 |
|
| 15 |
from huggingface_hub import hf_hub_download
|
| 16 |
ckpt_path = hf_hub_download(repo_id="Viglong/OriNet", filename="celarge/dino_weight.pt", repo_type="model", cache_dir='./', resume_download=True)
|
|
|
|
| 33 |
print('weight loaded')
|
| 34 |
val_preprocess = AutoImageProcessor.from_pretrained(DINO_LARGE, cache_dir='./')
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
def get_3angle(image):
|
| 38 |
|
|
|
|
| 53 |
angles[3] = confidence
|
| 54 |
return angles
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
def get_3angle_infer_aug(origin_img, rm_bkg_img):
|
| 57 |
|
| 58 |
# image = Image.open(image_path).convert('RGB')
|
|
|
|
| 78 |
angles[3] = confidence
|
| 79 |
return angles
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
def figure_to_img(fig):
|
| 83 |
with io.BytesIO() as buf:
|
|
|
|
| 95 |
rm_bkg_img = background_preprocess(origin_img, do_rm_bkg)
|
| 96 |
angles = get_3angle(rm_bkg_img)
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
phi = np.radians(angles[0])
|
| 99 |
theta = np.radians(angles[1])
|
| 100 |
+
gamma = angles[2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
+
render_axis = render_3D_axis(phi, theta, gamma)
|
| 104 |
+
res_img = overlay_images_with_scaling(render_axis, rm_bkg_img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
|
|
|
| 106 |
# axis_model = "axis.obj"
|
| 107 |
return [res_img, round(float(angles[0]), 2), round(float(angles[1]), 2), round(float(angles[2]), 2), round(float(angles[3]), 2)]
|
| 108 |
|
utils.py
ADDED
|
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import rembg
|
| 2 |
+
import random
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import PIL
|
| 7 |
+
from typing import Any
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
|
| 10 |
+
def resize_foreground(
|
| 11 |
+
image: Image,
|
| 12 |
+
ratio: float,
|
| 13 |
+
) -> Image:
|
| 14 |
+
image = np.array(image)
|
| 15 |
+
assert image.shape[-1] == 4
|
| 16 |
+
alpha = np.where(image[..., 3] > 0)
|
| 17 |
+
y1, y2, x1, x2 = (
|
| 18 |
+
alpha[0].min(),
|
| 19 |
+
alpha[0].max(),
|
| 20 |
+
alpha[1].min(),
|
| 21 |
+
alpha[1].max(),
|
| 22 |
+
)
|
| 23 |
+
# crop the foreground
|
| 24 |
+
fg = image[y1:y2, x1:x2]
|
| 25 |
+
# pad to square
|
| 26 |
+
size = max(fg.shape[0], fg.shape[1])
|
| 27 |
+
ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
|
| 28 |
+
ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
|
| 29 |
+
new_image = np.pad(
|
| 30 |
+
fg,
|
| 31 |
+
((ph0, ph1), (pw0, pw1), (0, 0)),
|
| 32 |
+
mode="constant",
|
| 33 |
+
constant_values=((0, 0), (0, 0), (0, 0)),
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
# compute padding according to the ratio
|
| 37 |
+
new_size = int(new_image.shape[0] / ratio)
|
| 38 |
+
# pad to size, double side
|
| 39 |
+
ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
|
| 40 |
+
ph1, pw1 = new_size - size - ph0, new_size - size - pw0
|
| 41 |
+
new_image = np.pad(
|
| 42 |
+
new_image,
|
| 43 |
+
((ph0, ph1), (pw0, pw1), (0, 0)),
|
| 44 |
+
mode="constant",
|
| 45 |
+
constant_values=((0, 0), (0, 0), (0, 0)),
|
| 46 |
+
)
|
| 47 |
+
new_image = Image.fromarray(new_image)
|
| 48 |
+
return new_image
|
| 49 |
+
|
| 50 |
+
def remove_background(image: Image,
|
| 51 |
+
rembg_session: Any = None,
|
| 52 |
+
force: bool = False,
|
| 53 |
+
**rembg_kwargs,
|
| 54 |
+
) -> Image:
|
| 55 |
+
do_remove = True
|
| 56 |
+
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
|
| 57 |
+
do_remove = False
|
| 58 |
+
do_remove = do_remove or force
|
| 59 |
+
if do_remove:
|
| 60 |
+
image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
|
| 61 |
+
return image
|
| 62 |
+
|
| 63 |
+
def random_crop(image, crop_scale=(0.8, 0.95)):
|
| 64 |
+
"""
|
| 65 |
+
随机裁切图片
|
| 66 |
+
image (numpy.ndarray): (H, W, C)。
|
| 67 |
+
crop_scale (tuple): (min_scale, max_scale)。
|
| 68 |
+
"""
|
| 69 |
+
assert isinstance(image, Image.Image), "iput must be PIL.Image.Image"
|
| 70 |
+
assert len(crop_scale) == 2 and 0 < crop_scale[0] <= crop_scale[1] <= 1
|
| 71 |
+
|
| 72 |
+
width, height = image.size
|
| 73 |
+
|
| 74 |
+
# 计算裁切的高度和宽度
|
| 75 |
+
crop_width = random.randint(int(width * crop_scale[0]), int(width * crop_scale[1]))
|
| 76 |
+
crop_height = random.randint(int(height * crop_scale[0]), int(height * crop_scale[1]))
|
| 77 |
+
|
| 78 |
+
# 随机选择裁切的起始点
|
| 79 |
+
left = random.randint(0, width - crop_width)
|
| 80 |
+
top = random.randint(0, height - crop_height)
|
| 81 |
+
|
| 82 |
+
# 裁切图片
|
| 83 |
+
cropped_image = image.crop((left, top, left + crop_width, top + crop_height))
|
| 84 |
+
|
| 85 |
+
return cropped_image
|
| 86 |
+
|
| 87 |
+
def get_crop_images(img, num=3):
|
| 88 |
+
cropped_images = []
|
| 89 |
+
for i in range(num):
|
| 90 |
+
cropped_images.append(random_crop(img))
|
| 91 |
+
return cropped_images
|
| 92 |
+
|
| 93 |
+
def background_preprocess(input_image, do_remove_background):
|
| 94 |
+
|
| 95 |
+
rembg_session = rembg.new_session() if do_remove_background else None
|
| 96 |
+
|
| 97 |
+
if do_remove_background:
|
| 98 |
+
input_image = remove_background(input_image, rembg_session)
|
| 99 |
+
input_image = resize_foreground(input_image, 0.85)
|
| 100 |
+
|
| 101 |
+
return input_image
|
| 102 |
+
|
| 103 |
+
def remove_outliers_and_average(tensor, threshold=1.5):
|
| 104 |
+
assert tensor.dim() == 1, "dimension of input Tensor must equal to 1"
|
| 105 |
+
|
| 106 |
+
q1 = torch.quantile(tensor, 0.25)
|
| 107 |
+
q3 = torch.quantile(tensor, 0.75)
|
| 108 |
+
iqr = q3 - q1
|
| 109 |
+
|
| 110 |
+
lower_bound = q1 - threshold * iqr
|
| 111 |
+
upper_bound = q3 + threshold * iqr
|
| 112 |
+
|
| 113 |
+
non_outliers = tensor[(tensor >= lower_bound) & (tensor <= upper_bound)]
|
| 114 |
+
|
| 115 |
+
if len(non_outliers) == 0:
|
| 116 |
+
return tensor.mean().item()
|
| 117 |
+
|
| 118 |
+
return non_outliers.mean().item()
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def remove_outliers_and_average_circular(tensor, threshold=1.5):
|
| 122 |
+
assert tensor.dim() == 1, "dimension of input Tensor must equal to 1"
|
| 123 |
+
|
| 124 |
+
# 将角度转换为二维平面上的点
|
| 125 |
+
radians = tensor * torch.pi / 180.0
|
| 126 |
+
x_coords = torch.cos(radians)
|
| 127 |
+
y_coords = torch.sin(radians)
|
| 128 |
+
|
| 129 |
+
# 计算平均向量
|
| 130 |
+
mean_x = torch.mean(x_coords)
|
| 131 |
+
mean_y = torch.mean(y_coords)
|
| 132 |
+
|
| 133 |
+
differences = torch.sqrt((x_coords - mean_x) * (x_coords - mean_x) + (y_coords - mean_y) * (y_coords - mean_y))
|
| 134 |
+
|
| 135 |
+
# 计算四分位数和 IQR
|
| 136 |
+
q1 = torch.quantile(differences, 0.25)
|
| 137 |
+
q3 = torch.quantile(differences, 0.75)
|
| 138 |
+
iqr = q3 - q1
|
| 139 |
+
|
| 140 |
+
# 计算上下限
|
| 141 |
+
lower_bound = q1 - threshold * iqr
|
| 142 |
+
upper_bound = q3 + threshold * iqr
|
| 143 |
+
|
| 144 |
+
# 筛选非离群点
|
| 145 |
+
non_outliers = tensor[(differences >= lower_bound) & (differences <= upper_bound)]
|
| 146 |
+
|
| 147 |
+
if len(non_outliers) == 0:
|
| 148 |
+
mean_angle = torch.atan2(mean_y, mean_x) * 180.0 / torch.pi
|
| 149 |
+
mean_angle = (mean_angle + 360) % 360
|
| 150 |
+
return mean_angle # 如果没有非离群点,返回 None
|
| 151 |
+
|
| 152 |
+
# 对非离群点再次计算平均向量
|
| 153 |
+
radians = non_outliers * torch.pi / 180.0
|
| 154 |
+
x_coords = torch.cos(radians)
|
| 155 |
+
y_coords = torch.sin(radians)
|
| 156 |
+
|
| 157 |
+
mean_x = torch.mean(x_coords)
|
| 158 |
+
mean_y = torch.mean(y_coords)
|
| 159 |
+
|
| 160 |
+
mean_angle = torch.atan2(mean_y, mean_x) * 180.0 / torch.pi
|
| 161 |
+
mean_angle = (mean_angle + 360) % 360
|
| 162 |
+
|
| 163 |
+
return mean_angle
|
| 164 |
+
|
| 165 |
+
def scale(x):
|
| 166 |
+
# print(x)
|
| 167 |
+
# if abs(x[0])<0.1 and abs(x[1])<0.1:
|
| 168 |
+
|
| 169 |
+
# return x*5
|
| 170 |
+
# else:
|
| 171 |
+
# return x
|
| 172 |
+
return x*3
|
| 173 |
+
|
| 174 |
+
def get_proj2D_XYZ(phi, theta, gamma):
|
| 175 |
+
x = np.array([-1*np.sin(phi)*np.cos(gamma) - np.cos(phi)*np.sin(theta)*np.sin(gamma), np.sin(phi)*np.sin(gamma) - np.cos(phi)*np.sin(theta)*np.cos(gamma)])
|
| 176 |
+
y = np.array([-1*np.cos(phi)*np.cos(gamma) + np.sin(phi)*np.sin(theta)*np.sin(gamma), np.cos(phi)*np.sin(gamma) + np.sin(phi)*np.sin(theta)*np.cos(gamma)])
|
| 177 |
+
z = np.array([np.cos(theta)*np.sin(gamma), np.cos(theta)*np.cos(gamma)])
|
| 178 |
+
x = scale(x)
|
| 179 |
+
y = scale(y)
|
| 180 |
+
z = scale(z)
|
| 181 |
+
return x, y, z
|
| 182 |
+
|
| 183 |
+
# 绘制3D坐标轴
|
| 184 |
+
def draw_axis(ax, origin, vector, color, label=None):
|
| 185 |
+
ax.quiver(origin[0], origin[1], vector[0], vector[1], angles='xy', scale_units='xy', scale=1, color=color)
|
| 186 |
+
if label!=None:
|
| 187 |
+
ax.text(origin[0] + vector[0] * 1.1, origin[1] + vector[1] * 1.1, label, color=color, fontsize=12)
|
| 188 |
+
|
| 189 |
+
def matplotlib_2D_arrow(angles, rm_bkg_img):
|
| 190 |
+
fig, ax = plt.subplots(figsize=(8, 8))
|
| 191 |
+
|
| 192 |
+
# 设置旋转角度
|
| 193 |
+
phi = np.radians(angles[0])
|
| 194 |
+
theta = np.radians(angles[1])
|
| 195 |
+
gamma = np.radians(-1*angles[2])
|
| 196 |
+
|
| 197 |
+
w, h = rm_bkg_img.size
|
| 198 |
+
if h>w:
|
| 199 |
+
extent = [-5*w/h, 5*w/h, -5, 5]
|
| 200 |
+
else:
|
| 201 |
+
extent = [-5, 5, -5*h/w, 5*h/w]
|
| 202 |
+
ax.imshow(rm_bkg_img, extent=extent, zorder=0, aspect ='auto') # extent 设置图片的显示范围
|
| 203 |
+
|
| 204 |
+
origin = np.array([0, 0])
|
| 205 |
+
|
| 206 |
+
# 旋转后的向量
|
| 207 |
+
rot_x, rot_y, rot_z = get_proj2D_XYZ(phi, theta, gamma)
|
| 208 |
+
|
| 209 |
+
# draw arrow
|
| 210 |
+
arrow_attr = [{'point':rot_x, 'color':'r', 'label':'front'},
|
| 211 |
+
{'point':rot_y, 'color':'g', 'label':'right'},
|
| 212 |
+
{'point':rot_z, 'color':'b', 'label':'top'}]
|
| 213 |
+
|
| 214 |
+
if phi> 45 and phi<=225:
|
| 215 |
+
order = [0,1,2]
|
| 216 |
+
elif phi > 225 and phi < 315:
|
| 217 |
+
order = [2,0,1]
|
| 218 |
+
else:
|
| 219 |
+
order = [2,1,0]
|
| 220 |
+
|
| 221 |
+
for i in range(3):
|
| 222 |
+
draw_axis(ax, origin, arrow_attr[order[i]]['point'], arrow_attr[order[i]]['color'], arrow_attr[order[i]]['label'])
|
| 223 |
+
# draw_axis(ax, origin, rot_y, 'g', label='right')
|
| 224 |
+
# draw_axis(ax, origin, rot_z, 'b', label='top')
|
| 225 |
+
# draw_axis(ax, origin, rot_x, 'r', label='front')
|
| 226 |
+
|
| 227 |
+
# 关闭坐标轴和网格
|
| 228 |
+
ax.set_axis_off()
|
| 229 |
+
ax.grid(False)
|
| 230 |
+
|
| 231 |
+
# 设置坐标范围
|
| 232 |
+
ax.set_xlim(-5, 5)
|
| 233 |
+
ax.set_ylim(-5, 5)
|
| 234 |
+
|
| 235 |
+
from render import render, Model
|
| 236 |
+
import math
|
| 237 |
+
def render_3D_axis(phi, theta, gamma):
|
| 238 |
+
radius = 240
|
| 239 |
+
# camera_location = [radius * math.cos(phi), radius * math.sin(phi), radius * math.tan(theta)]
|
| 240 |
+
# print(camera_location)
|
| 241 |
+
camera_location = [-1*radius * math.cos(phi), -1*radius * math.tan(theta), radius * math.sin(phi)]
|
| 242 |
+
img = render(
|
| 243 |
+
# Model("res/jinx.obj", texture_filename="res/jinx.tga"),
|
| 244 |
+
Model("./axis.obj", texture_filename="./axis.png"),
|
| 245 |
+
height=512,
|
| 246 |
+
width=512,
|
| 247 |
+
filename="tmp_render.png",
|
| 248 |
+
cam_loc = camera_location
|
| 249 |
+
)
|
| 250 |
+
img = img.rotate(gamma)
|
| 251 |
+
return img
|
| 252 |
+
|
| 253 |
+
def overlay_images_with_scaling(center_image: Image.Image, background_image, target_size=(512, 512)):
|
| 254 |
+
"""
|
| 255 |
+
调整前景图像大小为 512x512,将背景图像缩放以适配,并中心对齐叠加
|
| 256 |
+
:param center_image: 前景图像
|
| 257 |
+
:param background_image: 背景图像
|
| 258 |
+
:param target_size: 前景图像的目标大小,默认 (512, 512)
|
| 259 |
+
:return: 叠加后的图像
|
| 260 |
+
"""
|
| 261 |
+
# 确保输入图像为 RGBA 模式
|
| 262 |
+
if center_image.mode != "RGBA":
|
| 263 |
+
center_image = center_image.convert("RGBA")
|
| 264 |
+
if background_image.mode != "RGBA":
|
| 265 |
+
background_image = background_image.convert("RGBA")
|
| 266 |
+
|
| 267 |
+
# 调整前景图像大小
|
| 268 |
+
center_image = center_image.resize(target_size)
|
| 269 |
+
|
| 270 |
+
# 缩放背景图像,确保其适合前景图像的尺寸
|
| 271 |
+
bg_width, bg_height = background_image.size
|
| 272 |
+
target_width, target_height = target_size
|
| 273 |
+
|
| 274 |
+
# 按宽度或高度等比例缩放背景
|
| 275 |
+
scale = max(target_width / bg_width, target_height / bg_height)
|
| 276 |
+
new_size = (int(bg_width * scale), int(bg_height * scale))
|
| 277 |
+
resized_background = background_image.resize(new_size)
|
| 278 |
+
|
| 279 |
+
# 裁剪背景图像至目标大小
|
| 280 |
+
left = (new_size[0] - target_width) // 2
|
| 281 |
+
top = (new_size[1] - target_height) // 2
|
| 282 |
+
right = left + target_width
|
| 283 |
+
bottom = top + target_height
|
| 284 |
+
cropped_background = resized_background.crop((left, top, right, bottom))
|
| 285 |
+
|
| 286 |
+
# 将前景图像叠加到背景图像上
|
| 287 |
+
result = cropped_background.copy()
|
| 288 |
+
result.paste(center_image, (0, 0), mask=center_image)
|
| 289 |
+
|
| 290 |
+
return result
|