Update benchmark
Browse files- README.md +8 -6
- app.py +187 -12
- constants.py +12 -75
- styles.py +62 -13
- utils.py +142 -19
README.md
CHANGED
|
@@ -1,12 +1,14 @@
|
|
| 1 |
---
|
| 2 |
title: Russian ASR Leaderboard
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.41.1
|
| 8 |
app_file: app.py
|
| 9 |
-
pinned:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
-
|
| 12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
title: Russian ASR Leaderboard
|
| 3 |
+
emoji: 🎶
|
| 4 |
+
colorFrom: azure
|
| 5 |
+
colorTo: teal
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.41.1
|
| 8 |
app_file: app.py
|
| 9 |
+
pinned: true
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
tags:
|
| 12 |
+
- asr
|
| 13 |
+
- leaderboard
|
| 14 |
---
|
|
|
|
|
|
app.py
CHANGED
|
@@ -1,15 +1,28 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
|
| 3 |
-
from constants import INTRODUCTION_TEXT
|
| 4 |
-
from utils import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from styles import LEADERBOARD_CSS
|
| 6 |
|
| 7 |
init_repo()
|
|
|
|
| 8 |
|
| 9 |
with gr.Blocks(css=LEADERBOARD_CSS, theme=gr.themes.Soft()) as demo:
|
| 10 |
gr.HTML(
|
| 11 |
-
'<img src="
|
|
|
|
| 12 |
)
|
|
|
|
| 13 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 14 |
|
| 15 |
with gr.Tabs():
|
|
@@ -17,20 +30,182 @@ with gr.Blocks(css=LEADERBOARD_CSS, theme=gr.themes.Soft()) as demo:
|
|
| 17 |
leaderboard_html = gr.HTML(value=load_data(), every=60)
|
| 18 |
|
| 19 |
with gr.Tab("📈 Метрики"):
|
| 20 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
with gr.Tab("📊 Датасеты"):
|
| 23 |
-
gr.
|
| 24 |
|
| 25 |
with gr.Tab("✉️ Отправить результат"):
|
| 26 |
-
gr.
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
submit_btn.click(
|
| 31 |
-
|
| 32 |
-
inputs=
|
| 33 |
-
outputs=[leaderboard_html, output_msg,
|
| 34 |
)
|
| 35 |
|
| 36 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import json
|
| 3 |
|
| 4 |
+
from constants import INTRODUCTION_TEXT
|
| 5 |
+
from utils import (
|
| 6 |
+
init_repo,
|
| 7 |
+
load_data,
|
| 8 |
+
process_submit,
|
| 9 |
+
get_datasets_description,
|
| 10 |
+
get_metrics_html,
|
| 11 |
+
compute_wer_cer,
|
| 12 |
+
get_submit_html,
|
| 13 |
+
DATASETS,
|
| 14 |
+
)
|
| 15 |
from styles import LEADERBOARD_CSS
|
| 16 |
|
| 17 |
init_repo()
|
| 18 |
+
gr.set_static_paths(paths=["."])
|
| 19 |
|
| 20 |
with gr.Blocks(css=LEADERBOARD_CSS, theme=gr.themes.Soft()) as demo:
|
| 21 |
gr.HTML(
|
| 22 |
+
'<img src="/gradio_api/file=Logo.png" '
|
| 23 |
+
'style="display:block; margin:0 auto; width:34%; height:auto;">'
|
| 24 |
)
|
| 25 |
+
|
| 26 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 27 |
|
| 28 |
with gr.Tabs():
|
|
|
|
| 30 |
leaderboard_html = gr.HTML(value=load_data(), every=60)
|
| 31 |
|
| 32 |
with gr.Tab("📈 Метрики"):
|
| 33 |
+
gr.HTML(get_metrics_html())
|
| 34 |
+
with gr.Group():
|
| 35 |
+
gr.Markdown("### Песочница: посчитайте WER/CER на своих строках")
|
| 36 |
+
with gr.Row():
|
| 37 |
+
ref = gr.Textbox(
|
| 38 |
+
label="Референсный текст",
|
| 39 |
+
placeholder="например: я люблю машинное обучение",
|
| 40 |
+
lines=2,
|
| 41 |
+
)
|
| 42 |
+
hyp = gr.Textbox(
|
| 43 |
+
label="Гипотеза (распознанный текст)",
|
| 44 |
+
placeholder="например: я люблю мощинное обучение",
|
| 45 |
+
lines=2,
|
| 46 |
+
)
|
| 47 |
+
with gr.Row():
|
| 48 |
+
normalize = gr.Checkbox(
|
| 49 |
+
value=True,
|
| 50 |
+
label="Нормализовать (нижний регистр, без пунктуации)",
|
| 51 |
+
)
|
| 52 |
+
btn_calc = gr.Button("Посчитать")
|
| 53 |
+
with gr.Row():
|
| 54 |
+
out_wer = gr.Number(label="WER, %", precision=2)
|
| 55 |
+
out_cer = gr.Number(label="CER, %", precision=2)
|
| 56 |
+
|
| 57 |
+
def _ui_compute(ref_text, hyp_text, norm):
|
| 58 |
+
wer, cer = compute_wer_cer(ref_text or "", hyp_text or "", norm)
|
| 59 |
+
return wer, cer
|
| 60 |
+
|
| 61 |
+
btn_calc.click(
|
| 62 |
+
_ui_compute,
|
| 63 |
+
inputs=[ref, hyp, normalize],
|
| 64 |
+
outputs=[out_wer, out_cer],
|
| 65 |
+
)
|
| 66 |
|
| 67 |
with gr.Tab("📊 Датасеты"):
|
| 68 |
+
gr.HTML(get_datasets_description())
|
| 69 |
|
| 70 |
with gr.Tab("✉️ Отправить результат"):
|
| 71 |
+
gr.HTML(get_submit_html())
|
| 72 |
+
with gr.Row():
|
| 73 |
+
with gr.Column():
|
| 74 |
+
model_name = gr.Textbox(
|
| 75 |
+
label="Название модели *", placeholder="MyAwesomeASRModel"
|
| 76 |
+
)
|
| 77 |
+
link = gr.Textbox(
|
| 78 |
+
label="Ссылка на модель *",
|
| 79 |
+
placeholder="https://huggingface.co/username/model",
|
| 80 |
+
)
|
| 81 |
+
license_field = gr.Textbox(
|
| 82 |
+
label="Лицензия *", placeholder="MIT / Apache-2.0 / Closed"
|
| 83 |
+
)
|
| 84 |
+
with gr.Column():
|
| 85 |
+
metrics_json = gr.TextArea(
|
| 86 |
+
label="Метрики JSON *",
|
| 87 |
+
placeholder='{"Russian_LibriSpeech": {"wer": 0.1234, "cer": 0.0567}, ...}',
|
| 88 |
+
lines=16,
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
submit_btn = gr.Button("🚀 Отправить", elem_classes="full-width-btn")
|
| 92 |
+
output_msg = gr.HTML()
|
| 93 |
+
|
| 94 |
+
def _alert(kind, text):
|
| 95 |
+
return f'<div class="alert {kind}">{text}</div>'
|
| 96 |
+
|
| 97 |
+
def build_json_and_submit(name, link_, lic, metrics_str):
|
| 98 |
+
name = (name or "").strip()
|
| 99 |
+
link_ = (link_ or "").strip()
|
| 100 |
+
lic = (lic or "").strip()
|
| 101 |
+
if not name:
|
| 102 |
+
return (
|
| 103 |
+
gr.update(),
|
| 104 |
+
_alert("error", "Укажите название модели."),
|
| 105 |
+
metrics_str,
|
| 106 |
+
)
|
| 107 |
+
if not link_ or not (
|
| 108 |
+
link_.startswith("http://") or link_.startswith("https://")
|
| 109 |
+
):
|
| 110 |
+
return (
|
| 111 |
+
gr.update(),
|
| 112 |
+
_alert(
|
| 113 |
+
"error", "Ссылка должна начинаться с http:// или https://"
|
| 114 |
+
),
|
| 115 |
+
metrics_str,
|
| 116 |
+
)
|
| 117 |
+
if not lic:
|
| 118 |
+
return (
|
| 119 |
+
gr.update(),
|
| 120 |
+
_alert("error", "Укажите лицензию модели."),
|
| 121 |
+
metrics_str,
|
| 122 |
+
)
|
| 123 |
+
try:
|
| 124 |
+
metrics = json.loads(metrics_str)
|
| 125 |
+
except Exception as e:
|
| 126 |
+
return (
|
| 127 |
+
gr.update(),
|
| 128 |
+
_alert("error", f"Невалидный JSON метрик: {e}"),
|
| 129 |
+
metrics_str,
|
| 130 |
+
)
|
| 131 |
+
if not isinstance(metrics, dict):
|
| 132 |
+
return (
|
| 133 |
+
gr.update(),
|
| 134 |
+
_alert(
|
| 135 |
+
"error",
|
| 136 |
+
"Метрики должны быть объектом JSON с датасетами верхнего уровня.",
|
| 137 |
+
),
|
| 138 |
+
metrics_str,
|
| 139 |
+
)
|
| 140 |
+
missing = [ds for ds in DATASETS if ds not in metrics]
|
| 141 |
+
extra = [k for k in metrics.keys() if k not in DATASETS]
|
| 142 |
+
if missing:
|
| 143 |
+
return (
|
| 144 |
+
gr.update(),
|
| 145 |
+
_alert("error", f"Отсутствуют датасеты: {', '.join(missing)}"),
|
| 146 |
+
metrics_str,
|
| 147 |
+
)
|
| 148 |
+
if extra:
|
| 149 |
+
return (
|
| 150 |
+
gr.update(),
|
| 151 |
+
_alert("error", f"Лишние ключи в метриках: {', '.join(extra)}"),
|
| 152 |
+
metrics_str,
|
| 153 |
+
)
|
| 154 |
+
for ds in DATASETS:
|
| 155 |
+
entry = metrics.get(ds)
|
| 156 |
+
if not isinstance(entry, dict):
|
| 157 |
+
return (
|
| 158 |
+
gr.update(),
|
| 159 |
+
_alert(
|
| 160 |
+
"error",
|
| 161 |
+
f"{ds}: значение должно быть объектом с полями wer и cer",
|
| 162 |
+
),
|
| 163 |
+
metrics_str,
|
| 164 |
+
)
|
| 165 |
+
for k in ("wer", "cer"):
|
| 166 |
+
v = entry.get(k)
|
| 167 |
+
if not isinstance(v, (int, float)):
|
| 168 |
+
return (
|
| 169 |
+
gr.update(),
|
| 170 |
+
_alert("error", f"{ds}: поле {k} должно быть числом"),
|
| 171 |
+
metrics_str,
|
| 172 |
+
)
|
| 173 |
+
if not (0 <= float(v) <= 1):
|
| 174 |
+
return (
|
| 175 |
+
gr.update(),
|
| 176 |
+
_alert(
|
| 177 |
+
"error",
|
| 178 |
+
f"{ds}: поле {k} должно быть в диапазоне [0, 1]",
|
| 179 |
+
),
|
| 180 |
+
metrics_str,
|
| 181 |
+
)
|
| 182 |
+
payload = json.dumps(
|
| 183 |
+
{
|
| 184 |
+
"model_name": name,
|
| 185 |
+
"link": link_,
|
| 186 |
+
"license": lic,
|
| 187 |
+
"metrics": metrics,
|
| 188 |
+
},
|
| 189 |
+
ensure_ascii=False,
|
| 190 |
+
)
|
| 191 |
+
updated_html, status_msg, cleared = process_submit(payload)
|
| 192 |
+
if updated_html is None:
|
| 193 |
+
msg = status_msg.replace("Ошибка:", "").strip()
|
| 194 |
+
return (
|
| 195 |
+
gr.update(),
|
| 196 |
+
_alert("error", f"Не удалось добавить: {msg}"),
|
| 197 |
+
metrics_str,
|
| 198 |
+
)
|
| 199 |
+
return (
|
| 200 |
+
updated_html,
|
| 201 |
+
_alert("success", "✅ Результат добавлен в лидерборд."),
|
| 202 |
+
"",
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
submit_btn.click(
|
| 206 |
+
build_json_and_submit,
|
| 207 |
+
inputs=[model_name, link, license_field, metrics_json],
|
| 208 |
+
outputs=[leaderboard_html, output_msg, metrics_json],
|
| 209 |
)
|
| 210 |
|
| 211 |
demo.launch()
|
constants.py
CHANGED
|
@@ -1,78 +1,13 @@
|
|
| 1 |
import os
|
| 2 |
|
| 3 |
INTRODUCTION_TEXT = """
|
| 4 |
-
# Русский ASR
|
| 5 |
-
|
| 6 |
-
Здесь вы можете сравнить производительность различных моделей по метрикам WER (Word Error Rate) и CER (Character Error Rate) на нескольких датасетах.
|
| 7 |
-
Лидерборд сортируется по среднему WER (⬇️ - чем ниже, тем лучше).
|
| 8 |
-
Наведите курсор на значение WER в колонке датасета, чтобы увидеть CER.
|
| 9 |
-
Все метрики указаны в процентах (%).
|
| 10 |
"""
|
| 11 |
|
| 12 |
-
METRICS_TAB_TEXT = """
|
| 13 |
-
# Метрики
|
| 14 |
-
Метрики рассчитываются на текстах в нижнем регистре и без пунктуации.
|
| 15 |
-
|
| 16 |
-
- **WER (Word Error Rate)**: Ошибка на уровне слов. Рассчитывается как:
|
| 17 |
-
|
| 18 |
-
$$ WER = \\frac{S + D + I}{N} $$
|
| 19 |
-
|
| 20 |
-
где S - количество замен, D - удалений, I - вставок, N - количество слов в референсе.
|
| 21 |
-
|
| 22 |
-
- **CER (Character Error Rate)**: Ошибка на уровне символов. Аналогичная формула, но для символов:
|
| 23 |
-
|
| 24 |
-
$$ CER = \\frac{S + D + I}{N} $$
|
| 25 |
-
|
| 26 |
-
где S, D, I, N - соответственно замены, удаления, вставки и количество символов в референсе.
|
| 27 |
-
|
| 28 |
-
- **Средние значения**: Простое среднее по всем датасетам.
|
| 29 |
-
- Все метрики нормализованы и представлены в процентах для удобства сравнения.
|
| 30 |
-
"""
|
| 31 |
-
|
| 32 |
-
SUBMIT_TAB_TEXT = """
|
| 33 |
-
# Отправить результат
|
| 34 |
-
Чтобы добавить вашу модель в лидерборд, отправьте JSON с результатами. Метрики должны быть в диапазоне [0, 1] (не в процентах).
|
| 35 |
-
|
| 36 |
-
Формат:
|
| 37 |
-
```json
|
| 38 |
-
{
|
| 39 |
-
"model_name": "MyAwesomeASRModel",
|
| 40 |
-
"link": "https://huggingface.co/myusername/my-asr-model",
|
| 41 |
-
"license": "Apache-2.0",
|
| 42 |
-
"metrics": {
|
| 43 |
-
"Russian_LibriSpeech": {
|
| 44 |
-
"wer": 0.1234,
|
| 45 |
-
"cer": 0.0567
|
| 46 |
-
},
|
| 47 |
-
"Common_Voice_Corpus_22.0": {
|
| 48 |
-
"wer": 0.2345,
|
| 49 |
-
"cer": 0.0789
|
| 50 |
-
},
|
| 51 |
-
"Tone_Webinars": {
|
| 52 |
-
"wer": 0.3456,
|
| 53 |
-
"cer": 0.0987
|
| 54 |
-
},
|
| 55 |
-
"Tone_Books": {
|
| 56 |
-
"wer": 0.4567,
|
| 57 |
-
"cer": 0.1098
|
| 58 |
-
},
|
| 59 |
-
"Tone_Speak": {
|
| 60 |
-
"wer": 0.5678,
|
| 61 |
-
"cer": 0.1209
|
| 62 |
-
},
|
| 63 |
-
"Sova_RuDevices": {
|
| 64 |
-
"wer": 0.6789,
|
| 65 |
-
"cer": 0.1310
|
| 66 |
-
}
|
| 67 |
-
}
|
| 68 |
-
}
|
| 69 |
-
```
|
| 70 |
-
|
| 71 |
-
В отчёте обязательно должны быть все датасеты, а именно: Russian_LibriSpeech, Common_Voice_Corpus_22.0, Tone_Webinars, Tone_Books, Tone_Speak, Sova_RuDevices.
|
| 72 |
-
После отправки лидерборд обновится автоматически.
|
| 73 |
-
"""
|
| 74 |
REPO_ID = "Vikhrmodels/russian-asr-leaderboard"
|
| 75 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
|
| 76 |
DATASETS = [
|
| 77 |
"Russian_LibriSpeech",
|
| 78 |
"Common_Voice_Corpus_22.0",
|
|
@@ -81,36 +16,38 @@ DATASETS = [
|
|
| 81 |
"Tone_Speak",
|
| 82 |
"Sova_RuDevices",
|
| 83 |
]
|
|
|
|
| 84 |
SHORT_DATASET_NAMES = ["RuLS", "CV 22.0", "Webinars", "Books", "Speak", "Sova"]
|
|
|
|
| 85 |
DATASET_DESCRIPTIONS = {
|
| 86 |
"RuLS": {
|
| 87 |
"full_name": "Russian_LibriSpeech",
|
| 88 |
-
"description": "
|
| 89 |
"num_rows": 1352,
|
| 90 |
},
|
| 91 |
"CV 22.0": {
|
| 92 |
"full_name": "Common_Voice_Corpus_22.0",
|
| 93 |
-
"description": "
|
| 94 |
"num_rows": 10244,
|
| 95 |
},
|
| 96 |
"Webinars": {
|
| 97 |
"full_name": "Tone_Webinars",
|
| 98 |
-
"description": "
|
| 99 |
"num_rows": 21587,
|
| 100 |
},
|
| 101 |
"Books": {
|
| 102 |
"full_name": "Tone_Books",
|
| 103 |
-
"description": "
|
| 104 |
-
"num_rows":
|
| 105 |
},
|
| 106 |
"Speak": {
|
| 107 |
"full_name": "Tone_Speak",
|
| 108 |
-
"description": "
|
| 109 |
"num_rows": 700,
|
| 110 |
},
|
| 111 |
"Sova": {
|
| 112 |
"full_name": "Sova_RuDevices",
|
| 113 |
-
"description": "
|
| 114 |
"num_rows": 5799,
|
| 115 |
},
|
| 116 |
}
|
|
|
|
| 1 |
import os
|
| 2 |
|
| 3 |
INTRODUCTION_TEXT = """
|
| 4 |
+
# Русский ASR-лидерборд
|
| 5 |
+
Площадка для честного сравнения моделей распознавания русской речи. Мы считаем WER и CER на единых тестовых наборах и сортируем модели по среднему WER (ниже — лучше). Наведите курсор на значение WER в колонке датасета, чтобы увидеть CER. Все метрики указаны в процентах.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
"""
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
REPO_ID = "Vikhrmodels/russian-asr-leaderboard"
|
| 9 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 10 |
+
|
| 11 |
DATASETS = [
|
| 12 |
"Russian_LibriSpeech",
|
| 13 |
"Common_Voice_Corpus_22.0",
|
|
|
|
| 16 |
"Tone_Speak",
|
| 17 |
"Sova_RuDevices",
|
| 18 |
]
|
| 19 |
+
|
| 20 |
SHORT_DATASET_NAMES = ["RuLS", "CV 22.0", "Webinars", "Books", "Speak", "Sova"]
|
| 21 |
+
|
| 22 |
DATASET_DESCRIPTIONS = {
|
| 23 |
"RuLS": {
|
| 24 |
"full_name": "Russian_LibriSpeech",
|
| 25 |
+
"description": "Корпус на основе русскоязычных аудиокниг LibriVox. Около 98 часов речи с верифицированными транскрипциями.",
|
| 26 |
"num_rows": 1352,
|
| 27 |
},
|
| 28 |
"CV 22.0": {
|
| 29 |
"full_name": "Common_Voice_Corpus_22.0",
|
| 30 |
+
"description": "Краудсорсинговый многоязычный корпус Mozilla Common Voice. Версия 22.0 содержит русскую речь с транскрипциями.",
|
| 31 |
"num_rows": 10244,
|
| 32 |
},
|
| 33 |
"Webinars": {
|
| 34 |
"full_name": "Tone_Webinars",
|
| 35 |
+
"description": "Речь из образовательных вебинаров. Разнообразные дикторы и темы, близкие к реальным сценариям.",
|
| 36 |
"num_rows": 21587,
|
| 37 |
},
|
| 38 |
"Books": {
|
| 39 |
"full_name": "Tone_Books",
|
| 40 |
+
"description": "Фрагменты русских аудиокниг. Чистая дикторская речь и аккуратные транскрипции.",
|
| 41 |
+
"num_rows": 4930,
|
| 42 |
},
|
| 43 |
"Speak": {
|
| 44 |
"full_name": "Tone_Speak",
|
| 45 |
+
"description": "Синтетическая русская речь. Полезна для оценки устойчивости к TTS-голосам.",
|
| 46 |
"num_rows": 700,
|
| 47 |
},
|
| 48 |
"Sova": {
|
| 49 |
"full_name": "Sova_RuDevices",
|
| 50 |
+
"description": "Около 100 часов живой русской речи, записанной на устройствах 16 kHz. Тщательно размеченные транскрипции.",
|
| 51 |
"num_rows": 5799,
|
| 52 |
},
|
| 53 |
}
|
styles.py
CHANGED
|
@@ -1,23 +1,72 @@
|
|
| 1 |
LEADERBOARD_CSS = """
|
| 2 |
-
|
| 3 |
-
.leaderboard-wrapper
|
| 4 |
-
.leaderboard-table {
|
| 5 |
-
.leaderboard-table table {
|
| 6 |
-
.leaderboard-table th, .leaderboard-table td { border: 1px solid #ddd; padding: 8px; text-align: center; }
|
| 7 |
-
.leaderboard-table th { background-color: #f2f2f2; font-weight: bold; }
|
| 8 |
-
.leaderboard-table tr:nth-child(even) { background-color: #f9f9f9; }
|
| 9 |
-
.leaderboard-table tr:hover { background-color: #f1f1f1; }
|
| 10 |
.leaderboard-table a { color: #0366d6; text-decoration: none; }
|
| 11 |
.leaderboard-table a:hover { text-decoration: underline; }
|
| 12 |
-
.
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
.dark .leaderboard-table th, .dark .leaderboard-table td { border-color: #30363d; color: #e0e0e0; }
|
| 15 |
.dark .leaderboard-table th { background-color: #21262d; }
|
| 16 |
-
.dark .leaderboard-table tr:nth-child(even) { background-color: #161b22; }
|
| 17 |
-
.dark .leaderboard-table tr:hover { background-color: #0d1117; }
|
| 18 |
.dark .leaderboard-table a { color: #58a6ff; }
|
| 19 |
-
|
|
|
|
| 20 |
.gradio-container { max-width: 1400px; margin: auto; padding: 20px; }
|
| 21 |
.markdown-text { color: #24292e; padding: 15px; border-radius: 6px; background-color: #f6f8fa; margin-bottom: 20px; }
|
| 22 |
.dark .markdown-text { color: #c9d1d9; background-color: #161b22; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
"""
|
|
|
|
| 1 |
LEADERBOARD_CSS = """
|
| 2 |
+
/* ====== Leaderboard ====== */
|
| 3 |
+
.leaderboard-wrapper { overflow-x: auto; margin-bottom: 40px; }
|
| 4 |
+
.leaderboard-table table { width: 100%; border-collapse: collapse; }
|
| 5 |
+
.leaderboard-table th, .leaderboard-table td { text-align: center; padding: 8px; }
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
.leaderboard-table a { color: #0366d6; text-decoration: none; }
|
| 7 |
.leaderboard-table a:hover { text-decoration: underline; }
|
| 8 |
+
.metric-cell { cursor: help; display:inline-block; padding:2px 6px; border-radius: 8px; }
|
| 9 |
+
.best-metric { position: relative; background: rgba(88,166,255,.16); box-shadow: inset 0 0 0 1px rgba(88,166,255,.35); font-weight: 600; }
|
| 10 |
+
.best-metric:before { content: "★"; margin-right: 6px; font-size: 0.9em; color: #3b82f6; }
|
| 11 |
+
.dark .best-metric { background: rgba(88,166,255,.28); box-shadow: inset 0 0 0 1px rgba(88,166,255,.5); }
|
| 12 |
+
.dark .best-metric:before { color: #58a6ff; }
|
| 13 |
+
|
| 14 |
.dark .leaderboard-table th, .dark .leaderboard-table td { border-color: #30363d; color: #e0e0e0; }
|
| 15 |
.dark .leaderboard-table th { background-color: #21262d; }
|
|
|
|
|
|
|
| 16 |
.dark .leaderboard-table a { color: #58a6ff; }
|
| 17 |
+
|
| 18 |
+
/* ====== Container & Markdown ====== */
|
| 19 |
.gradio-container { max-width: 1400px; margin: auto; padding: 20px; }
|
| 20 |
.markdown-text { color: #24292e; padding: 15px; border-radius: 6px; background-color: #f6f8fa; margin-bottom: 20px; }
|
| 21 |
.dark .markdown-text { color: #c9d1d9; background-color: #161b22; }
|
| 22 |
+
|
| 23 |
+
/* ====== Dataset cards ====== */
|
| 24 |
+
.datasets-container { display: grid; grid-template-columns: repeat(auto-fill, minmax(320px, 1fr)); gap: 20px; }
|
| 25 |
+
.dataset-card { background: #f6f8fa; border-radius: 8px; padding: 15px; box-shadow: 0 2px 5px rgba(0,0,0,0.05); transition: transform .2s ease; }
|
| 26 |
+
.dataset-card:hover { transform: translateY(-4px); }
|
| 27 |
+
.dataset-card h3 { margin: 0 0 8px; color: #0366d6; }
|
| 28 |
+
.dataset-card .full-name { font-size: .85em; color: #4b5563; }
|
| 29 |
+
.dataset-card p { margin: 5px 0; }
|
| 30 |
+
.dataset-card .records { display:inline-block; padding: 2px 10px; border-radius: 999px; background: #eaf2ff; color: #0b63ce; font-weight: 600; }
|
| 31 |
+
.dark .dataset-card { background: #161b22; color: #c9d1d9; }
|
| 32 |
+
.dark .dataset-card h3 { color: #58a6ff; }
|
| 33 |
+
.dark .dataset-card .full-name { color: #a9c4e2; }
|
| 34 |
+
.dark .dataset-card .records { background: #0f2a45; color: #9bd1ff; }
|
| 35 |
+
|
| 36 |
+
/* ====== Metrics cards ====== */
|
| 37 |
+
.metrics-grid { display: grid; grid-template-columns: repeat(auto-fill, minmax(260px, 1fr)); gap: 16px; margin-bottom: 16px; }
|
| 38 |
+
.metric-card { background: #f6f8fa; border-radius: 12px; padding: 14px; box-shadow: 0 2px 5px rgba(0,0,0,0.04); color:#1f2937; }
|
| 39 |
+
.metric-card h3 { margin: 0 0 10px; color:#0b63ce; }
|
| 40 |
+
.metric-text { margin: 6px 0 0; }
|
| 41 |
+
.dark .metric-card { background:#161b22; color:#c9d1d9; }
|
| 42 |
+
.dark .metric-card h3 { color:#9bd1ff; }
|
| 43 |
+
|
| 44 |
+
.formula {
|
| 45 |
+
font-family: ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", monospace;
|
| 46 |
+
font-size: 15px; border-radius: 8px; padding: 8px 10px;
|
| 47 |
+
background: #eef3ff; color:#0b2a55; display: inline-block;
|
| 48 |
+
}
|
| 49 |
+
.formula span { font-weight: 700; }
|
| 50 |
+
.dark .formula { background: #0f1f33; color:#deecff; }
|
| 51 |
+
|
| 52 |
+
.chips { display: grid; grid-template-columns: repeat(auto-fill, minmax(120px, 1fr)); gap: 8px; margin-top: 10px; }
|
| 53 |
+
.chip { display: flex; flex-direction: column; gap: 2px; padding: 8px 10px; border-radius: 10px; background: #ffffff; border: 1px solid #e5e7eb; color:#111827; }
|
| 54 |
+
.chip b { font-size: 13px; }
|
| 55 |
+
.chip small { font-size: 12px; opacity: .9; }
|
| 56 |
+
.dark .chip { background: #0f172a; border-color: #22304a; color:#e5e7eb; }
|
| 57 |
+
|
| 58 |
+
/* ====== Submit form ====== */
|
| 59 |
+
.submit-grid { display: grid; grid-template-columns: 1fr 1fr; gap: 20px; align-items: start; }
|
| 60 |
+
.form-card { background: #f6f8fa; padding: 15px; border-radius: 8px; box-shadow: 0 2px 5px rgba(0,0,0,0.05); }
|
| 61 |
+
.form-card h3 { margin-top: 0; color: #0366d6; }
|
| 62 |
+
.dark .form-card { background: #161b22; color: #c9d1d9; }
|
| 63 |
+
.dark .form-card h3 { color: #58a6ff; }
|
| 64 |
+
@media (max-width: 900px) { .submit-grid { grid-template-columns: 1fr; } }
|
| 65 |
+
|
| 66 |
+
/* ====== Alerts ====== */
|
| 67 |
+
.alert { padding:12px 14px; border-radius:8px; margin-top:10px; font-weight:500; }
|
| 68 |
+
.alert.success { background:#e6f7ed; color:#0f5132; border:1px solid #b7ebc6; }
|
| 69 |
+
.dark .alert.success { background:#0f2a1d; color:#a6f3c2; border-color:#1f5c3a; }
|
| 70 |
+
.alert.error { background:#fdecea; color:#842029; border:1px solid #f5c2c7; }
|
| 71 |
+
.dark .alert.error { background:#3a0b0e; color:#f5a3aa; border-color:#7a1a21; }
|
| 72 |
"""
|
utils.py
CHANGED
|
@@ -4,6 +4,7 @@ from statistics import mean
|
|
| 4 |
from huggingface_hub import HfApi, create_repo
|
| 5 |
from datasets import load_dataset, Dataset
|
| 6 |
from datasets.data_files import EmptyDatasetError
|
|
|
|
| 7 |
|
| 8 |
from constants import (
|
| 9 |
REPO_ID,
|
|
@@ -38,16 +39,19 @@ def load_data():
|
|
| 38 |
if not df.empty:
|
| 39 |
df = df.sort_values("overall_wer").reset_index(drop=True)
|
| 40 |
df.insert(0, "rank", df.index + 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
-
df["overall_cer"] = (df["overall_cer"] * 100).round(2).apply(lambda x: f"{x}")
|
| 44 |
-
for ds in DATASETS:
|
| 45 |
-
df[f"wer_{ds}"] = (df[f"wer_{ds}"] * 100).round(2)
|
| 46 |
-
df[f"cer_{ds}"] = (df[f"cer_{ds}"] * 100).round(2)
|
| 47 |
-
|
| 48 |
for short_ds, ds in zip(SHORT_DATASET_NAMES, DATASETS):
|
| 49 |
df[short_ds] = df.apply(
|
| 50 |
-
lambda row: f'<span title="CER: {row[f"cer_{ds}"]:.2f}"
|
|
|
|
|
|
|
| 51 |
axis=1,
|
| 52 |
)
|
| 53 |
df = df.drop(columns=[f"wer_{ds}", f"cer_{ds}"])
|
|
@@ -56,7 +60,6 @@ def load_data():
|
|
| 56 |
lambda row: f'<a href="{row["link"]}" target="_blank">{row["model_name"]}</a>',
|
| 57 |
axis=1,
|
| 58 |
)
|
| 59 |
-
|
| 60 |
df = df.drop(columns=["link"])
|
| 61 |
|
| 62 |
df["license"] = df["license"].apply(
|
|
@@ -67,6 +70,10 @@ def load_data():
|
|
| 67 |
else "Закрытая"
|
| 68 |
)
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
df.rename(
|
| 71 |
columns={
|
| 72 |
"overall_wer": "Средний WER ⬇️",
|
|
@@ -78,8 +85,24 @@ def load_data():
|
|
| 78 |
inplace=True,
|
| 79 |
)
|
| 80 |
|
| 81 |
-
table_html = df.to_html(
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
else:
|
| 84 |
return (
|
| 85 |
'<div class="leaderboard-wrapper"><div class="leaderboard-table"><table><thead><tr><th>Ранг</th><th>Модель</th><th>Тип модели</th><th>Средний WER ⬇️</th><th>Средний CER ⬇️</th>'
|
|
@@ -96,21 +119,17 @@ def process_submit(json_str):
|
|
| 96 |
)
|
| 97 |
try:
|
| 98 |
data = json.loads(json_str)
|
| 99 |
-
|
| 100 |
required_keys = ["model_name", "link", "license", "metrics"]
|
| 101 |
if not all(key in data for key in required_keys):
|
| 102 |
raise ValueError(
|
| 103 |
"Неверная структура JSON. Требуемые поля: model_name, link, license, metrics"
|
| 104 |
)
|
| 105 |
-
|
| 106 |
metrics = data["metrics"]
|
| 107 |
if set(metrics.keys()) != set(DATASETS):
|
| 108 |
raise ValueError(
|
| 109 |
f"Метрики должны быть для всех датасетов: {', '.join(DATASETS)}"
|
| 110 |
)
|
| 111 |
-
|
| 112 |
-
wers = []
|
| 113 |
-
cers = []
|
| 114 |
row = {
|
| 115 |
"model_name": data["model_name"],
|
| 116 |
"link": data["link"],
|
|
@@ -123,7 +142,6 @@ def process_submit(json_str):
|
|
| 123 |
row[f"cer_{ds}"] = metrics[ds]["cer"]
|
| 124 |
wers.append(metrics[ds]["wer"])
|
| 125 |
cers.append(metrics[ds]["cer"])
|
| 126 |
-
|
| 127 |
row["overall_wer"] = mean(wers)
|
| 128 |
row["overall_cer"] = mean(cers)
|
| 129 |
|
|
@@ -132,6 +150,7 @@ def process_submit(json_str):
|
|
| 132 |
df = dataset["train"].to_pandas()
|
| 133 |
except EmptyDatasetError:
|
| 134 |
df = pd.DataFrame(columns=columns)
|
|
|
|
| 135 |
new_df = pd.concat([df, pd.DataFrame([row])], ignore_index=True)
|
| 136 |
new_dataset = Dataset.from_pandas(new_df)
|
| 137 |
new_dataset.push_to_hub(REPO_ID, token=HF_TOKEN)
|
|
@@ -143,7 +162,111 @@ def process_submit(json_str):
|
|
| 143 |
|
| 144 |
|
| 145 |
def get_datasets_description():
|
| 146 |
-
|
| 147 |
for short_ds, info in DATASET_DESCRIPTIONS.items():
|
| 148 |
-
|
| 149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from huggingface_hub import HfApi, create_repo
|
| 5 |
from datasets import load_dataset, Dataset
|
| 6 |
from datasets.data_files import EmptyDatasetError
|
| 7 |
+
import re
|
| 8 |
|
| 9 |
from constants import (
|
| 10 |
REPO_ID,
|
|
|
|
| 39 |
if not df.empty:
|
| 40 |
df = df.sort_values("overall_wer").reset_index(drop=True)
|
| 41 |
df.insert(0, "rank", df.index + 1)
|
| 42 |
+
for col in (
|
| 43 |
+
["overall_wer", "overall_cer"]
|
| 44 |
+
+ [f"wer_{ds}" for ds in DATASETS]
|
| 45 |
+
+ [f"cer_{ds}" for ds in DATASETS]
|
| 46 |
+
):
|
| 47 |
+
df[col] = (df[col] * 100).round(2)
|
| 48 |
|
| 49 |
+
best_values = {ds: df[f"wer_{ds}"].min() for ds in DATASETS}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
for short_ds, ds in zip(SHORT_DATASET_NAMES, DATASETS):
|
| 51 |
df[short_ds] = df.apply(
|
| 52 |
+
lambda row: f'<span title="CER: {row[f"cer_{ds}"]:.2f}%" '
|
| 53 |
+
f'class="metric-cell{" best-metric" if row[f"wer_{ds}"] == best_values[ds] else ""}">'
|
| 54 |
+
f"{row[f'wer_{ds}']:.2f}%</span>",
|
| 55 |
axis=1,
|
| 56 |
)
|
| 57 |
df = df.drop(columns=[f"wer_{ds}", f"cer_{ds}"])
|
|
|
|
| 60 |
lambda row: f'<a href="{row["link"]}" target="_blank">{row["model_name"]}</a>',
|
| 61 |
axis=1,
|
| 62 |
)
|
|
|
|
| 63 |
df = df.drop(columns=["link"])
|
| 64 |
|
| 65 |
df["license"] = df["license"].apply(
|
|
|
|
| 70 |
else "Закрытая"
|
| 71 |
)
|
| 72 |
|
| 73 |
+
df["rank"] = df["rank"].apply(
|
| 74 |
+
lambda r: "🥇" if r == 1 else "🥈" if r == 2 else "🥉" if r == 3 else str(r)
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
df.rename(
|
| 78 |
columns={
|
| 79 |
"overall_wer": "Средний WER ⬇️",
|
|
|
|
| 85 |
inplace=True,
|
| 86 |
)
|
| 87 |
|
| 88 |
+
table_html = df.to_html(
|
| 89 |
+
escape=False, index=False, classes="display cell-border compact stripe"
|
| 90 |
+
)
|
| 91 |
+
scripts = """
|
| 92 |
+
<link rel="stylesheet" href="https://cdn.datatables.net/1.13.4/css/jquery.dataTables.min.css">
|
| 93 |
+
<script src="https://code.jquery.com/jquery-3.6.0.min.js"></script>
|
| 94 |
+
<script src="https://cdn.datatables.net/1.13.4/js/jquery.dataTables.min.js"></script>
|
| 95 |
+
<script>
|
| 96 |
+
$(document).ready(function(){
|
| 97 |
+
$('.leaderboard-table table').DataTable({
|
| 98 |
+
pageLength: 25,
|
| 99 |
+
order: [[3, 'asc']],
|
| 100 |
+
language: { url: '//cdn.datatables.net/plug-ins/1.13.4/i18n/ru.json' }
|
| 101 |
+
});
|
| 102 |
+
});
|
| 103 |
+
</script>
|
| 104 |
+
"""
|
| 105 |
+
return f'<div class="leaderboard-wrapper"><div class="leaderboard-table">{table_html}</div></div>{scripts}'
|
| 106 |
else:
|
| 107 |
return (
|
| 108 |
'<div class="leaderboard-wrapper"><div class="leaderboard-table"><table><thead><tr><th>Ранг</th><th>Модель</th><th>Тип модели</th><th>Средний WER ⬇️</th><th>Средний CER ⬇️</th>'
|
|
|
|
| 119 |
)
|
| 120 |
try:
|
| 121 |
data = json.loads(json_str)
|
|
|
|
| 122 |
required_keys = ["model_name", "link", "license", "metrics"]
|
| 123 |
if not all(key in data for key in required_keys):
|
| 124 |
raise ValueError(
|
| 125 |
"Неверная структура JSON. Требуемые поля: model_name, link, license, metrics"
|
| 126 |
)
|
|
|
|
| 127 |
metrics = data["metrics"]
|
| 128 |
if set(metrics.keys()) != set(DATASETS):
|
| 129 |
raise ValueError(
|
| 130 |
f"Метрики должны быть для всех датасетов: {', '.join(DATASETS)}"
|
| 131 |
)
|
| 132 |
+
wers, cers = [], []
|
|
|
|
|
|
|
| 133 |
row = {
|
| 134 |
"model_name": data["model_name"],
|
| 135 |
"link": data["link"],
|
|
|
|
| 142 |
row[f"cer_{ds}"] = metrics[ds]["cer"]
|
| 143 |
wers.append(metrics[ds]["wer"])
|
| 144 |
cers.append(metrics[ds]["cer"])
|
|
|
|
| 145 |
row["overall_wer"] = mean(wers)
|
| 146 |
row["overall_cer"] = mean(cers)
|
| 147 |
|
|
|
|
| 150 |
df = dataset["train"].to_pandas()
|
| 151 |
except EmptyDatasetError:
|
| 152 |
df = pd.DataFrame(columns=columns)
|
| 153 |
+
|
| 154 |
new_df = pd.concat([df, pd.DataFrame([row])], ignore_index=True)
|
| 155 |
new_dataset = Dataset.from_pandas(new_df)
|
| 156 |
new_dataset.push_to_hub(REPO_ID, token=HF_TOKEN)
|
|
|
|
| 162 |
|
| 163 |
|
| 164 |
def get_datasets_description():
|
| 165 |
+
html = '<div class="datasets-container">'
|
| 166 |
for short_ds, info in DATASET_DESCRIPTIONS.items():
|
| 167 |
+
html += f"""
|
| 168 |
+
<div class="dataset-card">
|
| 169 |
+
<h3>{short_ds} <span class="full-name">{info["full_name"]}</span></h3>
|
| 170 |
+
<p>{info["description"]}</p>
|
| 171 |
+
<p class="records">📊 {info["num_rows"]} записей</p>
|
| 172 |
+
</div>
|
| 173 |
+
"""
|
| 174 |
+
html += "</div>"
|
| 175 |
+
return html
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
def _strip_punct(text: str) -> str:
|
| 179 |
+
return re.sub(r"[^\w\s]+", "", text, flags=re.UNICODE)
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
def normalize_text(s: str) -> str:
|
| 183 |
+
return _strip_punct(s.lower()).strip()
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def _edit_distance(a, b):
|
| 187 |
+
n, m = len(a), len(b)
|
| 188 |
+
dp = [[0] * (m + 1) for _ in range(n + 1)]
|
| 189 |
+
for i in range(n + 1):
|
| 190 |
+
dp[i][0] = i
|
| 191 |
+
for j in range(m + 1):
|
| 192 |
+
dp[0][j] = j
|
| 193 |
+
for i in range(1, n + 1):
|
| 194 |
+
ai = a[i - 1]
|
| 195 |
+
for j in range(1, m + 1):
|
| 196 |
+
cost = 0 if ai == b[j - 1] else 1
|
| 197 |
+
dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1, dp[i - 1][j - 1] + cost)
|
| 198 |
+
return dp[n][m]
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
def compute_wer_cer(ref: str, hyp: str, normalize: bool = True):
|
| 202 |
+
if normalize:
|
| 203 |
+
ref_norm, hyp_norm = normalize_text(ref), normalize_text(hyp)
|
| 204 |
+
else:
|
| 205 |
+
ref_norm, hyp_norm = ref, hyp
|
| 206 |
+
ref_words, hyp_words = ref_norm.split(), hyp_norm.split()
|
| 207 |
+
Nw = max(1, len(ref_words))
|
| 208 |
+
wer = _edit_distance(ref_words, hyp_words) / Nw
|
| 209 |
+
ref_chars, hyp_chars = list(ref_norm), list(hyp_norm)
|
| 210 |
+
Nc = max(1, len(ref_chars))
|
| 211 |
+
cer = _edit_distance(ref_chars, hyp_chars) / Nc
|
| 212 |
+
return round(wer * 100, 2), round(cer * 100, 2)
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def get_metrics_html():
|
| 216 |
+
return """
|
| 217 |
+
<div class="metrics-grid">
|
| 218 |
+
<div class="metric-card">
|
| 219 |
+
<h3>WER — Word Error Rate</h3>
|
| 220 |
+
<div class="formula">WER = ( <span>S</span> + <span>D</span> + <span>I</span> ) / <span>N</span></div>
|
| 221 |
+
<div class="chips">
|
| 222 |
+
<div class="chip"><b>S</b><small>замены</small></div>
|
| 223 |
+
<div class="chip"><b>D</b><small>удаления</small></div>
|
| 224 |
+
<div class="chip"><b>I</b><small>вставки</small></div>
|
| 225 |
+
<div class="chip"><b>N</b><small>слов в референсе</small></div>
|
| 226 |
+
</div>
|
| 227 |
+
</div>
|
| 228 |
+
<div class="metric-card">
|
| 229 |
+
<h3>CER — Character Error Rate</h3>
|
| 230 |
+
<div class="formula">CER = ( <span>S</span> + <span>D</span> + <span>I</span> ) / <span>N</span></div>
|
| 231 |
+
<div class="chips">
|
| 232 |
+
<div class="chip"><b>S, D, I</b><small>операции редактирования</small></div>
|
| 233 |
+
<div class="chip"><b>N</b><small>символов в референсе</small></div>
|
| 234 |
+
</div>
|
| 235 |
+
</div>
|
| 236 |
+
<div class="metric-card">
|
| 237 |
+
<h3>Нормализация</h3>
|
| 238 |
+
<p class="metric-text">Перед расчётом приводим текст к нижнему регистру и удаляем пунктуацию.</p>
|
| 239 |
+
</div>
|
| 240 |
+
<div class="metric-card">
|
| 241 |
+
<h3>Сравнение</h3>
|
| 242 |
+
<p class="metric-text">Сортировка по среднему WER по всем датасетам. Метрики отображаются в процентах.</p>
|
| 243 |
+
</div>
|
| 244 |
+
</div>
|
| 245 |
+
"""
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
def get_submit_html():
|
| 249 |
+
return """
|
| 250 |
+
<div class="submit-grid">
|
| 251 |
+
<div class="form-card">
|
| 252 |
+
<h3>Общая информация</h3>
|
| 253 |
+
<ul>
|
| 254 |
+
<li><b>Название модели</b> — коротко и понятно.</li>
|
| 255 |
+
<li><b>Ссылка</b> — HuggingFace, GitHub или сайт.</li>
|
| 256 |
+
<li><b>Лицензия</b> — MIT, Apache-2.0, GPL или Closed.</li>
|
| 257 |
+
</ul>
|
| 258 |
+
</div>
|
| 259 |
+
<div class="form-card">
|
| 260 |
+
<h3>Метрики</h3>
|
| 261 |
+
<p>Укажите WER и CER для всех датасетов в формате JSON. Значения — от 0 до 1.</p>
|
| 262 |
+
<pre>{
|
| 263 |
+
"Russian_LibriSpeech": {"wer": 0.1234, "cer": 0.0567},
|
| 264 |
+
"Common_Voice_Corpus_22.0": {"wer": 0.2345, "cer": 0.0789},
|
| 265 |
+
"Tone_Webinars": {"wer": 0.3456, "cer": 0.0987},
|
| 266 |
+
"Tone_Books": {"wer": 0.4567, "cer": 0.1098},
|
| 267 |
+
"Tone_Speak": {"wer": 0.5678, "cer": 0.1209},
|
| 268 |
+
"Sova_RuDevices": {"wer": 0.6789, "cer": 0.1310}
|
| 269 |
+
}</pre>
|
| 270 |
+
</div>
|
| 271 |
+
</div>
|
| 272 |
+
"""
|