Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
from PIL import Image
|
| 4 |
+
|
| 5 |
+
image_class_pipe = pipeline(task="image-classification", model="google/vit-large-patch16-224")
|
| 6 |
+
video_class_pipe = pipeline(task="video-classification", model="nateraw/videomae-base-finetuned-ucf101-subset")
|
| 7 |
+
depth_estimator = pipeline(task="depth-estimation", model="Intel/dpt-large")
|
| 8 |
+
image_caption = pipeline("image-to-text",model="Salesforce/blip-image-captioning-base")
|
| 9 |
+
|
| 10 |
+
def classify_image_func(arr):
|
| 11 |
+
img = Image.fromarray(arr)
|
| 12 |
+
image_result = image_class_pipe(img)
|
| 13 |
+
return image_result[0]["label"]
|
| 14 |
+
|
| 15 |
+
def classify_video_func(vid):
|
| 16 |
+
video_result = video_class_pipe(vid)
|
| 17 |
+
return video_result
|
| 18 |
+
|
| 19 |
+
def estimate_depth_func(arr):
|
| 20 |
+
img = Image.fromarray(arr)
|
| 21 |
+
depth_result = depth_estimator(img)
|
| 22 |
+
return depth_result["depth"]
|
| 23 |
+
|
| 24 |
+
def blip_captioning_func(arr):
|
| 25 |
+
img = Image.fromarray(arr)
|
| 26 |
+
image_caption_result = image_caption(img, max_new_tokens=500)
|
| 27 |
+
return image_caption_result[0]["generated_text"]
|
| 28 |
+
|
| 29 |
+
with gr.Blocks() as demo:
|
| 30 |
+
gr.Markdown("# AI Methods")
|
| 31 |
+
|
| 32 |
+
with gr.Tab("Media Classification"):
|
| 33 |
+
gr.Markdown("# Image Classification")
|
| 34 |
+
|
| 35 |
+
with gr.Row():
|
| 36 |
+
classify_image_input = gr.Image(width=340, height=340)
|
| 37 |
+
with gr.Row():
|
| 38 |
+
classify_image_btn = gr.Button("Classify Image")
|
| 39 |
+
classify_image_output = gr.Textbox(label="Result")
|
| 40 |
+
|
| 41 |
+
classify_image_btn.click(fn=classify_image_func, inputs=[classify_image_input], outputs=[classify_image_output])
|
| 42 |
+
|
| 43 |
+
gr.Markdown("# Video Classification")
|
| 44 |
+
|
| 45 |
+
with gr.Row():
|
| 46 |
+
classify_video_input = gr.Video(width=340, height=340)
|
| 47 |
+
with gr.Row():
|
| 48 |
+
classify_video_btn = gr.Button("Classify Video")
|
| 49 |
+
classify_video_output = gr.Textbox(label="Result")
|
| 50 |
+
|
| 51 |
+
classify_video_btn.click(fn=classify_video_func, inputs=[classify_video_input], outputs=[classify_video_output])
|
| 52 |
+
|
| 53 |
+
with gr.Tab("Depth"):
|
| 54 |
+
gr.Markdown("# Depth Estimation")
|
| 55 |
+
|
| 56 |
+
with gr.Row():
|
| 57 |
+
depth_estimation_input = gr.Image(width=260, height=260)
|
| 58 |
+
with gr.Row():
|
| 59 |
+
depth_estimation_btn = gr.Button("Estimate Depth")
|
| 60 |
+
with gr.Row():
|
| 61 |
+
depth_estimation_output = gr.Image()
|
| 62 |
+
|
| 63 |
+
depth_estimation_btn.click(fn=estimate_depth_func, inputs=[depth_estimation_input], outputs=[depth_estimation_output])
|
| 64 |
+
|
| 65 |
+
with gr.Tab("BLIP Captioning"):
|
| 66 |
+
gr.Markdown("# BLIP Captioning")
|
| 67 |
+
|
| 68 |
+
with gr.Row():
|
| 69 |
+
blip_input = gr.Image(width=260, height=260)
|
| 70 |
+
with gr.Row():
|
| 71 |
+
blip_btn = gr.Button("BLIP Caption")
|
| 72 |
+
blip_output = gr.Textbox(label="Caption")
|
| 73 |
+
|
| 74 |
+
blip_btn.click(fn=blip_captioning_func, inputs=[blip_input], outputs=[blip_output])
|
| 75 |
+
|
| 76 |
+
demo.launch(debug=True)
|