Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -53,23 +53,24 @@ st.set_page_config(
|
|
| 53 |
}
|
| 54 |
)
|
| 55 |
|
| 56 |
-
|
| 57 |
-
st.session_state.setdefault('
|
| 58 |
-
st.session_state.setdefault('
|
| 59 |
-
st.session_state.setdefault('
|
| 60 |
-
st.session_state.setdefault('
|
| 61 |
-
st.session_state.setdefault('
|
| 62 |
-
st.session_state.setdefault('
|
| 63 |
-
st.session_state.setdefault('
|
| 64 |
-
st.session_state.setdefault('
|
| 65 |
-
st.session_state.setdefault('
|
| 66 |
-
st.session_state.setdefault('
|
| 67 |
-
|
| 68 |
-
|
|
|
|
| 69 |
if 'asset_gallery_container' not in st.session_state:
|
| 70 |
st.session_state['asset_gallery_container'] = st.sidebar.empty()
|
| 71 |
|
| 72 |
-
@dataclass #
|
| 73 |
class ModelConfig:
|
| 74 |
name: str
|
| 75 |
base_model: str
|
|
@@ -77,46 +78,48 @@ class ModelConfig:
|
|
| 77 |
domain: Optional[str] = None
|
| 78 |
model_type: str = "causal_lm"
|
| 79 |
@property
|
| 80 |
-
def model_path(self):
|
|
|
|
| 81 |
|
| 82 |
-
@dataclass #
|
| 83 |
class DiffusionConfig:
|
| 84 |
name: str
|
| 85 |
base_model: str
|
| 86 |
size: str
|
| 87 |
domain: Optional[str] = None
|
| 88 |
@property
|
| 89 |
-
def model_path(self):
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
self.
|
| 95 |
-
self.
|
| 96 |
-
self.
|
|
|
|
| 97 |
"Why did the AI go to therapy? Too many layers to unpack! 😂",
|
| 98 |
"Training complete! Time for a binary coffee break. ☕",
|
| 99 |
"I told my neural network a joke; it couldn't stop dropping bits! 🤖",
|
| 100 |
"I asked the AI for a pun, and it said, 'I'm punning on parallel processing!' 😄",
|
| 101 |
"Debugging my code is like a stand-up routine—always a series of exceptions! 😆"
|
| 102 |
]
|
| 103 |
-
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
|
| 104 |
-
with st.spinner(f"Loading {model_path}... ⏳"):
|
| 105 |
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
| 106 |
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 107 |
-
if self.tokenizer.pad_token is None:
|
| 108 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 109 |
-
if config:
|
| 110 |
-
self.config = config
|
| 111 |
-
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
|
| 112 |
-
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
|
| 113 |
return self
|
| 114 |
-
def save_model(self, path: str):
|
| 115 |
-
with st.spinner("Saving model... 💾"):
|
| 116 |
os.makedirs(os.path.dirname(path), exist_ok=True)
|
| 117 |
self.model.save_pretrained(path)
|
| 118 |
-
self.tokenizer.save_pretrained(path)
|
| 119 |
-
st.success(f"Model saved at {path}! ✅")
|
| 120 |
|
| 121 |
class DiffusionBuilder:
|
| 122 |
def __init__(self):
|
|
@@ -137,32 +140,31 @@ class DiffusionBuilder:
|
|
| 137 |
def generate(self, prompt: str):
|
| 138 |
return self.pipeline(prompt, num_inference_steps=20).images[0]
|
| 139 |
|
| 140 |
-
def generate_filename(sequence, ext="png"):
|
| 141 |
-
return f"{sequence}_{time.strftime('%d%m%Y%H%M%S')}.{ext}"
|
| 142 |
|
| 143 |
def pdf_url_to_filename(url):
|
| 144 |
-
return re.sub(r'[<>:"/\\|?*]', '_', url) + ".pdf"
|
| 145 |
|
| 146 |
def get_download_link(file_path, mime_type="application/pdf", label="Download"):
|
| 147 |
-
return f'<a href="data:{mime_type};base64,{base64.b64encode(open(file_path, "rb").read()).decode()}" download="{os.path.basename(file_path)}">{label}</a>'
|
| 148 |
|
| 149 |
-
def zip_directory(directory_path, zip_path):
|
| 150 |
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
| 151 |
[zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path)))
|
| 152 |
-
for root, _, files in os.walk(directory_path) for file in files]
|
| 153 |
|
| 154 |
def get_model_files(model_type="causal_lm"):
|
| 155 |
-
return [d for d in glob.glob("models/*" if model_type == "causal_lm" else "diffusion_models/*") if os.path.isdir(d)] or ["None"]
|
| 156 |
|
| 157 |
def get_gallery_files(file_types=["png", "pdf"]):
|
| 158 |
-
return sorted(list({f for ext in file_types for f in glob.glob(f"*.{ext}")}))
|
| 159 |
|
| 160 |
def get_pdf_files():
|
| 161 |
-
return sorted(glob.glob("*.pdf"))
|
| 162 |
|
| 163 |
-
# 📥 Download PDF: Delivering docs faster than a caffeinated courier!
|
| 164 |
def download_pdf(url, output_path):
|
| 165 |
-
try:
|
| 166 |
response = requests.get(url, stream=True, timeout=10)
|
| 167 |
if response.status_code == 200:
|
| 168 |
with open(output_path, "wb") as f:
|
|
@@ -171,13 +173,13 @@ def download_pdf(url, output_path):
|
|
| 171 |
ret = True
|
| 172 |
else:
|
| 173 |
ret = False
|
| 174 |
-
except requests.RequestException as e:
|
| 175 |
logger.error(f"Failed to download {url}: {e}")
|
| 176 |
ret = False
|
| 177 |
-
return ret
|
| 178 |
|
| 179 |
-
#
|
| 180 |
-
async def process_pdf_snapshot(pdf_path, mode="single"):
|
| 181 |
start_time = time.time()
|
| 182 |
status = st.empty()
|
| 183 |
status.text(f"Processing PDF Snapshot ({mode})... (0s)")
|
|
@@ -207,14 +209,13 @@ async def process_pdf_snapshot(pdf_path, mode="single"):
|
|
| 207 |
doc.close()
|
| 208 |
elapsed = int(time.time() - start_time)
|
| 209 |
status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!")
|
| 210 |
-
update_gallery()
|
| 211 |
return output_files
|
| 212 |
except Exception as e:
|
| 213 |
status.error(f"Failed to process PDF: {str(e)}")
|
| 214 |
return []
|
| 215 |
|
| 216 |
-
#
|
| 217 |
-
async def process_ocr(image, output_file):
|
| 218 |
start_time = time.time()
|
| 219 |
status = st.empty()
|
| 220 |
status.text("Processing GOT-OCR2_0... (0s)")
|
|
@@ -228,97 +229,69 @@ async def process_ocr(image, output_file):
|
|
| 228 |
status.text(f"GOT-OCR2_0 completed in {elapsed}s!")
|
| 229 |
async with aiofiles.open(output_file, "w") as f:
|
| 230 |
await f.write(result)
|
| 231 |
-
update_gallery()
|
| 232 |
return result
|
| 233 |
|
| 234 |
-
#
|
| 235 |
-
async def process_image_gen(prompt, output_file):
|
| 236 |
start_time = time.time()
|
| 237 |
status = st.empty()
|
| 238 |
status.text("Processing Image Gen... (0s)")
|
| 239 |
-
pipeline =
|
|
|
|
|
|
|
|
|
|
| 240 |
gen_image = pipeline(prompt, num_inference_steps=20).images[0]
|
| 241 |
elapsed = int(time.time() - start_time)
|
| 242 |
status.text(f"Image Gen completed in {elapsed}s!")
|
| 243 |
gen_image.save(output_file)
|
| 244 |
-
update_gallery()
|
| 245 |
return gen_image
|
| 246 |
|
| 247 |
-
#
|
| 248 |
-
def process_image_with_prompt(image, prompt, model="gpt-4o-mini", detail="auto"):
|
| 249 |
buffered = BytesIO()
|
| 250 |
-
image.save(buffered, format="PNG")
|
| 251 |
-
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 252 |
-
messages = [{
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
|
|
|
|
|
|
|
|
|
| 256 |
try:
|
| 257 |
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300)
|
| 258 |
return response.choices[0].message.content
|
| 259 |
except Exception as e:
|
| 260 |
return f"Error processing image with GPT: {str(e)}"
|
| 261 |
|
| 262 |
-
#
|
| 263 |
-
def process_text_with_prompt(text, prompt, model="gpt-4o-mini"):
|
| 264 |
messages = [{"role": "user", "content": f"{prompt}\n\n{text}"}]
|
| 265 |
-
try:
|
| 266 |
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300)
|
| 267 |
return response.choices[0].message.content
|
| 268 |
except Exception as e:
|
| 269 |
return f"Error processing text with GPT: {str(e)}"
|
| 270 |
|
| 271 |
-
|
| 272 |
-
st.session_state.setdefault('gallery_size', 2) # 🔧 Setting default gallery size to 2 if it's missing!
|
| 273 |
-
st.session_state['gallery_size'] = st.sidebar.slider("Gallery Size", 1, 10, st.session_state['gallery_size'], key="gallery_size_slider") # 🎚️ Slide to adjust your gallery size and bring balance to your art!
|
| 274 |
|
| 275 |
-
#
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
with cols[idx % 2]:
|
| 286 |
-
st.session_state['unique_counter'] += 1
|
| 287 |
-
unique_id = st.session_state['unique_counter']
|
| 288 |
-
if file.endswith('.png'):
|
| 289 |
-
st.image(Image.open(file), caption=os.path.basename(file), use_container_width=True)
|
| 290 |
-
else:
|
| 291 |
-
doc = fitz.open(file)
|
| 292 |
-
pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5))
|
| 293 |
-
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 294 |
-
st.image(img, caption=os.path.basename(file), use_container_width=True)
|
| 295 |
-
doc.close()
|
| 296 |
-
checkbox_key = f"asset_{file}_{unique_id}"
|
| 297 |
-
st.session_state['asset_checkboxes'][file] = st.checkbox("Use for SFT/Input", value=st.session_state['asset_checkboxes'].get(file, False), key=checkbox_key)
|
| 298 |
-
mime_type = "image/png" if file.endswith('.png') else "application/pdf"
|
| 299 |
-
st.markdown(get_download_link(file, mime_type, "Snag It! 📥"), unsafe_allow_html=True)
|
| 300 |
-
if st.button("Zap It! 🗑️", key=f"delete_{file}_{unique_id}"):
|
| 301 |
-
os.remove(file)
|
| 302 |
-
st.session_state['asset_checkboxes'].pop(file, None)
|
| 303 |
-
st.sidebar.success(f"Asset {os.path.basename(file)} vaporized! 💨")
|
| 304 |
-
st.rerun()
|
| 305 |
-
|
| 306 |
-
st.sidebar.subheader("Action Logs 📜") # 📝 Action Logs: Where our system whispers its secrets!
|
| 307 |
-
with st.sidebar:
|
| 308 |
-
[st.write(f"{record.asctime} - {record.levelname} - {record.message}") for record in log_records]
|
| 309 |
-
|
| 310 |
-
st.sidebar.subheader("History 📜") # 🕰️ History: A walk down memory lane, one log at a time!
|
| 311 |
-
with st.sidebar:
|
| 312 |
-
[st.write(entry) for entry in st.session_state['history']]
|
| 313 |
-
|
| 314 |
-
tabs = st.tabs(["Camera Snap 📷", "Download PDFs 📥", "Test OCR 🔍", "Build Titan 🌱", "Test Image Gen 🎨", "PDF Process 📄", "Image Process 🖼️", "MD Gallery 📚"])
|
| 315 |
(tab_camera, tab_download, tab_ocr, tab_build, tab_imggen, tab_pdf_process, tab_image_process, tab_md_gallery) = tabs
|
| 316 |
|
|
|
|
| 317 |
with tab_camera:
|
| 318 |
-
st.header("Camera Snap 📷")
|
| 319 |
-
st.subheader("Single Capture")
|
| 320 |
cols = st.columns(2)
|
| 321 |
-
|
| 322 |
with cols[0]:
|
| 323 |
cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
|
| 324 |
if cam0_img:
|
|
@@ -329,12 +302,9 @@ with tab_camera:
|
|
| 329 |
f.write(cam0_img.getvalue())
|
| 330 |
st.session_state['cam0_file'] = filename
|
| 331 |
entry = f"Snapshot from Cam 0: {filename}"
|
| 332 |
-
|
| 333 |
-
st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 0:")] + [entry]
|
| 334 |
st.image(Image.open(filename), caption="Camera 0", use_container_width=True)
|
| 335 |
logger.info(f"Saved snapshot from Camera 0: {filename}")
|
| 336 |
-
update_gallery()
|
| 337 |
-
|
| 338 |
with cols[1]:
|
| 339 |
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
|
| 340 |
if cam1_img:
|
|
@@ -345,12 +315,11 @@ with tab_camera:
|
|
| 345 |
f.write(cam1_img.getvalue())
|
| 346 |
st.session_state['cam1_file'] = filename
|
| 347 |
entry = f"Snapshot from Cam 1: {filename}"
|
| 348 |
-
|
| 349 |
-
st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 1:")] + [entry]
|
| 350 |
st.image(Image.open(filename), caption="Camera 1", use_container_width=True)
|
| 351 |
logger.info(f"Saved snapshot from Camera 1: {filename}")
|
| 352 |
-
update_gallery()
|
| 353 |
|
|
|
|
| 354 |
with tab_download:
|
| 355 |
st.header("Download PDFs 📥")
|
| 356 |
if st.button("Examples 📚"):
|
|
@@ -369,7 +338,6 @@ with tab_download:
|
|
| 369 |
"https://arxiv.org/pdf/2106.10504"
|
| 370 |
]
|
| 371 |
st.session_state['pdf_urls'] = "\n".join(example_urls)
|
| 372 |
-
|
| 373 |
url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200)
|
| 374 |
if st.button("Robo-Download 🤖"):
|
| 375 |
urls = url_input.strip().split("\n")
|
|
@@ -386,8 +354,7 @@ with tab_download:
|
|
| 386 |
st.session_state['downloaded_pdfs'][url] = output_path
|
| 387 |
logger.info(f"Downloaded PDF from {url} to {output_path}")
|
| 388 |
entry = f"Downloaded PDF: {output_path}"
|
| 389 |
-
|
| 390 |
-
st.session_state['history'].append(entry)
|
| 391 |
st.session_state['asset_checkboxes'][output_path] = True
|
| 392 |
else:
|
| 393 |
st.error(f"Failed to nab {url} 😿")
|
|
@@ -396,8 +363,6 @@ with tab_download:
|
|
| 396 |
st.session_state['downloaded_pdfs'][url] = output_path
|
| 397 |
progress_bar.progress((idx + 1) / total_urls)
|
| 398 |
status_text.text("Robo-Download complete! 🚀")
|
| 399 |
-
update_gallery()
|
| 400 |
-
|
| 401 |
mode = st.selectbox("Snapshot Mode", ["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (High-Res)"], key="download_mode")
|
| 402 |
if st.button("Snapshot Selected 📸"):
|
| 403 |
selected_pdfs = [path for path in get_gallery_files() if path.endswith('.pdf') and st.session_state['asset_checkboxes'].get(path, False)]
|
|
@@ -406,15 +371,18 @@ with tab_download:
|
|
| 406 |
if not os.path.exists(pdf_path):
|
| 407 |
st.warning(f"File not found: {pdf_path}. Skipping.")
|
| 408 |
continue
|
| 409 |
-
mode_key = {"Single Page (High-Res)": "single",
|
|
|
|
|
|
|
| 410 |
snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key))
|
| 411 |
for snapshot in snapshots:
|
| 412 |
st.image(Image.open(snapshot), caption=snapshot, use_container_width=True)
|
| 413 |
st.session_state['asset_checkboxes'][snapshot] = True
|
| 414 |
-
update_gallery()
|
| 415 |
else:
|
| 416 |
st.warning("No PDFs selected for snapshotting! Check some boxes in the sidebar.")
|
| 417 |
|
|
|
|
| 418 |
with tab_ocr:
|
| 419 |
st.header("Test OCR 🔍")
|
| 420 |
all_files = get_gallery_files()
|
|
@@ -433,8 +401,7 @@ with tab_ocr:
|
|
| 433 |
result = asyncio.run(process_ocr(image, output_file))
|
| 434 |
full_text += f"## {os.path.basename(file)}\n\n{result}\n\n"
|
| 435 |
entry = f"OCR Test: {file} -> {output_file}"
|
| 436 |
-
|
| 437 |
-
st.session_state['history'].append(entry)
|
| 438 |
md_output_file = f"full_ocr_{int(time.time())}.md"
|
| 439 |
with open(md_output_file, "w") as f:
|
| 440 |
f.write(full_text)
|
|
@@ -455,8 +422,7 @@ with tab_ocr:
|
|
| 455 |
st.session_state['processing']['ocr'] = True
|
| 456 |
result = asyncio.run(process_ocr(image, output_file))
|
| 457 |
entry = f"OCR Test: {selected_file} -> {output_file}"
|
| 458 |
-
|
| 459 |
-
st.session_state['history'].append(entry)
|
| 460 |
st.text_area("OCR Result", result, height=200, key="ocr_result")
|
| 461 |
st.success(f"OCR output saved to {output_file}")
|
| 462 |
st.session_state['processing']['ocr'] = False
|
|
@@ -470,8 +436,7 @@ with tab_ocr:
|
|
| 470 |
result = asyncio.run(process_ocr(image, output_file))
|
| 471 |
full_text += f"## Page {i + 1}\n\n{result}\n\n"
|
| 472 |
entry = f"OCR Test: {selected_file} Page {i + 1} -> {output_file}"
|
| 473 |
-
|
| 474 |
-
st.session_state['history'].append(entry)
|
| 475 |
md_output_file = f"full_ocr_{os.path.basename(selected_file)}_{int(time.time())}.md"
|
| 476 |
with open(md_output_file, "w") as f:
|
| 477 |
f.write(full_text)
|
|
@@ -480,12 +445,13 @@ with tab_ocr:
|
|
| 480 |
else:
|
| 481 |
st.warning("No assets in gallery yet. Use Camera Snap or Download PDFs!")
|
| 482 |
|
|
|
|
| 483 |
with tab_build:
|
| 484 |
st.header("Build Titan 🌱")
|
| 485 |
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type")
|
| 486 |
base_model = st.selectbox(
|
| 487 |
"Select Tiny Model",
|
| 488 |
-
["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM"
|
| 489 |
else ["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"]
|
| 490 |
)
|
| 491 |
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
|
|
@@ -495,14 +461,18 @@ with tab_build:
|
|
| 495 |
name=model_name, base_model=base_model, size="small", domain=domain
|
| 496 |
)
|
| 497 |
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
|
| 498 |
-
builder.load_model(base_model, config)
|
| 499 |
-
|
| 500 |
-
st.session_state['
|
|
|
|
|
|
|
|
|
|
| 501 |
entry = f"Built {model_type} model: {model_name}"
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
st.
|
| 505 |
|
|
|
|
| 506 |
with tab_imggen:
|
| 507 |
st.header("Test Image Gen 🎨")
|
| 508 |
all_files = get_gallery_files()
|
|
@@ -523,15 +493,14 @@ with tab_imggen:
|
|
| 523 |
st.session_state['processing']['gen'] = True
|
| 524 |
result = asyncio.run(process_image_gen(prompt, output_file))
|
| 525 |
entry = f"Image Gen Test: {prompt} -> {output_file}"
|
| 526 |
-
|
| 527 |
-
st.session_state['history'].append(entry)
|
| 528 |
st.image(result, caption="Generated Image", use_container_width=True)
|
| 529 |
st.success(f"Image saved to {output_file}")
|
| 530 |
st.session_state['processing']['gen'] = False
|
| 531 |
else:
|
| 532 |
st.warning("No images or PDFs in gallery yet. Use Camera Snap or Download PDFs!")
|
| 533 |
-
update_gallery()
|
| 534 |
|
|
|
|
| 535 |
with tab_pdf_process:
|
| 536 |
st.header("PDF Process")
|
| 537 |
st.subheader("Upload PDFs for GPT-based text extraction")
|
|
@@ -590,6 +559,7 @@ with tab_pdf_process:
|
|
| 590 |
st.success(f"PDF processing complete. MD file saved as {output_filename}")
|
| 591 |
st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed PDF MD"), unsafe_allow_html=True)
|
| 592 |
|
|
|
|
| 593 |
with tab_image_process:
|
| 594 |
st.header("Image Process")
|
| 595 |
st.subheader("Upload Images for GPT-based OCR")
|
|
@@ -614,6 +584,7 @@ with tab_image_process:
|
|
| 614 |
st.success(f"Image processing complete. MD file saved as {output_filename}")
|
| 615 |
st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed Image MD"), unsafe_allow_html=True)
|
| 616 |
|
|
|
|
| 617 |
with tab_md_gallery:
|
| 618 |
st.header("MD Gallery and GPT Processing")
|
| 619 |
gpt_models = ["gpt-4o", "gpt-4o-mini"]
|
|
@@ -665,3 +636,47 @@ with tab_md_gallery:
|
|
| 665 |
st.warning("No MD files selected.")
|
| 666 |
else:
|
| 667 |
st.warning("No MD files found.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
}
|
| 54 |
)
|
| 55 |
|
| 56 |
+
# Set up default session state values.
|
| 57 |
+
st.session_state.setdefault('history', []) # History: starting fresh if empty!
|
| 58 |
+
st.session_state.setdefault('builder', None) # Builder: set up if missing.
|
| 59 |
+
st.session_state.setdefault('model_loaded', False) # Model Loaded: not loaded by default.
|
| 60 |
+
st.session_state.setdefault('processing', {}) # Processing: initialize as an empty dict.
|
| 61 |
+
st.session_state.setdefault('asset_checkboxes', {}) # Asset Checkboxes: default to an empty dict.
|
| 62 |
+
st.session_state.setdefault('downloaded_pdfs', {}) # Downloaded PDFs: start with none.
|
| 63 |
+
st.session_state.setdefault('unique_counter', 0) # Unique Counter: initialize to zero.
|
| 64 |
+
st.session_state.setdefault('selected_model_type', "Causal LM")
|
| 65 |
+
st.session_state.setdefault('selected_model', "None")
|
| 66 |
+
st.session_state.setdefault('cam0_file', None)
|
| 67 |
+
st.session_state.setdefault('cam1_file', None)
|
| 68 |
+
|
| 69 |
+
# Create a single container for the asset gallery in the sidebar.
|
| 70 |
if 'asset_gallery_container' not in st.session_state:
|
| 71 |
st.session_state['asset_gallery_container'] = st.sidebar.empty()
|
| 72 |
|
| 73 |
+
@dataclass # ModelConfig: A blueprint for model configurations.
|
| 74 |
class ModelConfig:
|
| 75 |
name: str
|
| 76 |
base_model: str
|
|
|
|
| 78 |
domain: Optional[str] = None
|
| 79 |
model_type: str = "causal_lm"
|
| 80 |
@property
|
| 81 |
+
def model_path(self):
|
| 82 |
+
return f"models/{self.name}"
|
| 83 |
|
| 84 |
+
@dataclass # DiffusionConfig: Where diffusion magic takes shape.
|
| 85 |
class DiffusionConfig:
|
| 86 |
name: str
|
| 87 |
base_model: str
|
| 88 |
size: str
|
| 89 |
domain: Optional[str] = None
|
| 90 |
@property
|
| 91 |
+
def model_path(self):
|
| 92 |
+
return f"diffusion_models/{self.name}"
|
| 93 |
+
|
| 94 |
+
class ModelBuilder:
|
| 95 |
+
def __init__(self):
|
| 96 |
+
self.config = None
|
| 97 |
+
self.model = None
|
| 98 |
+
self.tokenizer = None
|
| 99 |
+
self.jokes = [
|
| 100 |
"Why did the AI go to therapy? Too many layers to unpack! 😂",
|
| 101 |
"Training complete! Time for a binary coffee break. ☕",
|
| 102 |
"I told my neural network a joke; it couldn't stop dropping bits! 🤖",
|
| 103 |
"I asked the AI for a pun, and it said, 'I'm punning on parallel processing!' 😄",
|
| 104 |
"Debugging my code is like a stand-up routine—always a series of exceptions! 😆"
|
| 105 |
]
|
| 106 |
+
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
|
| 107 |
+
with st.spinner(f"Loading {model_path}... ⏳"):
|
| 108 |
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
| 109 |
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 110 |
+
if self.tokenizer.pad_token is None:
|
| 111 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 112 |
+
if config:
|
| 113 |
+
self.config = config
|
| 114 |
+
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
|
| 115 |
+
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
|
| 116 |
return self
|
| 117 |
+
def save_model(self, path: str):
|
| 118 |
+
with st.spinner("Saving model... 💾"):
|
| 119 |
os.makedirs(os.path.dirname(path), exist_ok=True)
|
| 120 |
self.model.save_pretrained(path)
|
| 121 |
+
self.tokenizer.save_pretrained(path)
|
| 122 |
+
st.success(f"Model saved at {path}! ✅")
|
| 123 |
|
| 124 |
class DiffusionBuilder:
|
| 125 |
def __init__(self):
|
|
|
|
| 140 |
def generate(self, prompt: str):
|
| 141 |
return self.pipeline(prompt, num_inference_steps=20).images[0]
|
| 142 |
|
| 143 |
+
def generate_filename(sequence, ext="png"):
|
| 144 |
+
return f"{sequence}_{time.strftime('%d%m%Y%H%M%S')}.{ext}"
|
| 145 |
|
| 146 |
def pdf_url_to_filename(url):
|
| 147 |
+
return re.sub(r'[<>:"/\\|?*]', '_', url) + ".pdf"
|
| 148 |
|
| 149 |
def get_download_link(file_path, mime_type="application/pdf", label="Download"):
|
| 150 |
+
return f'<a href="data:{mime_type};base64,{base64.b64encode(open(file_path, "rb").read()).decode()}" download="{os.path.basename(file_path)}">{label}</a>'
|
| 151 |
|
| 152 |
+
def zip_directory(directory_path, zip_path):
|
| 153 |
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
| 154 |
[zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path)))
|
| 155 |
+
for root, _, files in os.walk(directory_path) for file in files]
|
| 156 |
|
| 157 |
def get_model_files(model_type="causal_lm"):
|
| 158 |
+
return [d for d in glob.glob("models/*" if model_type == "causal_lm" else "diffusion_models/*") if os.path.isdir(d)] or ["None"]
|
| 159 |
|
| 160 |
def get_gallery_files(file_types=["png", "pdf"]):
|
| 161 |
+
return sorted(list({f for ext in file_types for f in glob.glob(f"*.{ext}")}))
|
| 162 |
|
| 163 |
def get_pdf_files():
|
| 164 |
+
return sorted(glob.glob("*.pdf"))
|
| 165 |
|
|
|
|
| 166 |
def download_pdf(url, output_path):
|
| 167 |
+
try:
|
| 168 |
response = requests.get(url, stream=True, timeout=10)
|
| 169 |
if response.status_code == 200:
|
| 170 |
with open(output_path, "wb") as f:
|
|
|
|
| 173 |
ret = True
|
| 174 |
else:
|
| 175 |
ret = False
|
| 176 |
+
except requests.RequestException as e:
|
| 177 |
logger.error(f"Failed to download {url}: {e}")
|
| 178 |
ret = False
|
| 179 |
+
return ret
|
| 180 |
|
| 181 |
+
# Async PDF Snapshot: Snap your PDF pages without blocking.
|
| 182 |
+
async def process_pdf_snapshot(pdf_path, mode="single"):
|
| 183 |
start_time = time.time()
|
| 184 |
status = st.empty()
|
| 185 |
status.text(f"Processing PDF Snapshot ({mode})... (0s)")
|
|
|
|
| 209 |
doc.close()
|
| 210 |
elapsed = int(time.time() - start_time)
|
| 211 |
status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!")
|
|
|
|
| 212 |
return output_files
|
| 213 |
except Exception as e:
|
| 214 |
status.error(f"Failed to process PDF: {str(e)}")
|
| 215 |
return []
|
| 216 |
|
| 217 |
+
# Async OCR: Convert images to text.
|
| 218 |
+
async def process_ocr(image, output_file):
|
| 219 |
start_time = time.time()
|
| 220 |
status = st.empty()
|
| 221 |
status.text("Processing GOT-OCR2_0... (0s)")
|
|
|
|
| 229 |
status.text(f"GOT-OCR2_0 completed in {elapsed}s!")
|
| 230 |
async with aiofiles.open(output_file, "w") as f:
|
| 231 |
await f.write(result)
|
|
|
|
| 232 |
return result
|
| 233 |
|
| 234 |
+
# Async Image Gen: Your image genie.
|
| 235 |
+
async def process_image_gen(prompt, output_file):
|
| 236 |
start_time = time.time()
|
| 237 |
status = st.empty()
|
| 238 |
status.text("Processing Image Gen... (0s)")
|
| 239 |
+
pipeline = (st.session_state['builder'].pipeline
|
| 240 |
+
if st.session_state.get('builder') and isinstance(st.session_state['builder'], DiffusionBuilder)
|
| 241 |
+
and st.session_state['builder'].pipeline
|
| 242 |
+
else StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu"))
|
| 243 |
gen_image = pipeline(prompt, num_inference_steps=20).images[0]
|
| 244 |
elapsed = int(time.time() - start_time)
|
| 245 |
status.text(f"Image Gen completed in {elapsed}s!")
|
| 246 |
gen_image.save(output_file)
|
|
|
|
| 247 |
return gen_image
|
| 248 |
|
| 249 |
+
# GPT-Image Interpreter: Turning pixels into prose!
|
| 250 |
+
def process_image_with_prompt(image, prompt, model="gpt-4o-mini", detail="auto"):
|
| 251 |
buffered = BytesIO()
|
| 252 |
+
image.save(buffered, format="PNG")
|
| 253 |
+
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 254 |
+
messages = [{
|
| 255 |
+
"role": "user",
|
| 256 |
+
"content": [
|
| 257 |
+
{"type": "text", "text": prompt},
|
| 258 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_str}", "detail": detail}}
|
| 259 |
+
]
|
| 260 |
+
}]
|
| 261 |
try:
|
| 262 |
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300)
|
| 263 |
return response.choices[0].message.content
|
| 264 |
except Exception as e:
|
| 265 |
return f"Error processing image with GPT: {str(e)}"
|
| 266 |
|
| 267 |
+
# GPT-Text Alchemist: Merging prompt and text.
|
| 268 |
+
def process_text_with_prompt(text, prompt, model="gpt-4o-mini"):
|
| 269 |
messages = [{"role": "user", "content": f"{prompt}\n\n{text}"}]
|
| 270 |
+
try:
|
| 271 |
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300)
|
| 272 |
return response.choices[0].message.content
|
| 273 |
except Exception as e:
|
| 274 |
return f"Error processing text with GPT: {str(e)}"
|
| 275 |
|
| 276 |
+
# ----------------- SIDEBAR UPDATES -----------------
|
|
|
|
|
|
|
| 277 |
|
| 278 |
+
# Sidebar: Gallery Settings
|
| 279 |
+
st.sidebar.subheader("Gallery Settings")
|
| 280 |
+
st.session_state.setdefault('gallery_size', 2)
|
| 281 |
+
st.session_state['gallery_size'] = st.sidebar.slider("Gallery Size", 1, 10, st.session_state['gallery_size'], key="gallery_size_slider")
|
| 282 |
+
|
| 283 |
+
# ----------------- TAB SETUP -----------------
|
| 284 |
+
tabs = st.tabs([
|
| 285 |
+
"Camera Snap 📷", "Download PDFs 📥", "Test OCR 🔍", "Build Titan 🌱",
|
| 286 |
+
"Test Image Gen 🎨", "PDF Process 📄", "Image Process 🖼️", "MD Gallery 📚"
|
| 287 |
+
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
(tab_camera, tab_download, tab_ocr, tab_build, tab_imggen, tab_pdf_process, tab_image_process, tab_md_gallery) = tabs
|
| 289 |
|
| 290 |
+
# ----------------- TAB: Camera Snap -----------------
|
| 291 |
with tab_camera:
|
| 292 |
+
st.header("Camera Snap 📷")
|
| 293 |
+
st.subheader("Single Capture")
|
| 294 |
cols = st.columns(2)
|
|
|
|
| 295 |
with cols[0]:
|
| 296 |
cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
|
| 297 |
if cam0_img:
|
|
|
|
| 302 |
f.write(cam0_img.getvalue())
|
| 303 |
st.session_state['cam0_file'] = filename
|
| 304 |
entry = f"Snapshot from Cam 0: {filename}"
|
| 305 |
+
st.session_state['history'].append(entry)
|
|
|
|
| 306 |
st.image(Image.open(filename), caption="Camera 0", use_container_width=True)
|
| 307 |
logger.info(f"Saved snapshot from Camera 0: {filename}")
|
|
|
|
|
|
|
| 308 |
with cols[1]:
|
| 309 |
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
|
| 310 |
if cam1_img:
|
|
|
|
| 315 |
f.write(cam1_img.getvalue())
|
| 316 |
st.session_state['cam1_file'] = filename
|
| 317 |
entry = f"Snapshot from Cam 1: {filename}"
|
| 318 |
+
st.session_state['history'].append(entry)
|
|
|
|
| 319 |
st.image(Image.open(filename), caption="Camera 1", use_container_width=True)
|
| 320 |
logger.info(f"Saved snapshot from Camera 1: {filename}")
|
|
|
|
| 321 |
|
| 322 |
+
# ----------------- TAB: Download PDFs -----------------
|
| 323 |
with tab_download:
|
| 324 |
st.header("Download PDFs 📥")
|
| 325 |
if st.button("Examples 📚"):
|
|
|
|
| 338 |
"https://arxiv.org/pdf/2106.10504"
|
| 339 |
]
|
| 340 |
st.session_state['pdf_urls'] = "\n".join(example_urls)
|
|
|
|
| 341 |
url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200)
|
| 342 |
if st.button("Robo-Download 🤖"):
|
| 343 |
urls = url_input.strip().split("\n")
|
|
|
|
| 354 |
st.session_state['downloaded_pdfs'][url] = output_path
|
| 355 |
logger.info(f"Downloaded PDF from {url} to {output_path}")
|
| 356 |
entry = f"Downloaded PDF: {output_path}"
|
| 357 |
+
st.session_state['history'].append(entry)
|
|
|
|
| 358 |
st.session_state['asset_checkboxes'][output_path] = True
|
| 359 |
else:
|
| 360 |
st.error(f"Failed to nab {url} 😿")
|
|
|
|
| 363 |
st.session_state['downloaded_pdfs'][url] = output_path
|
| 364 |
progress_bar.progress((idx + 1) / total_urls)
|
| 365 |
status_text.text("Robo-Download complete! 🚀")
|
|
|
|
|
|
|
| 366 |
mode = st.selectbox("Snapshot Mode", ["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (High-Res)"], key="download_mode")
|
| 367 |
if st.button("Snapshot Selected 📸"):
|
| 368 |
selected_pdfs = [path for path in get_gallery_files() if path.endswith('.pdf') and st.session_state['asset_checkboxes'].get(path, False)]
|
|
|
|
| 371 |
if not os.path.exists(pdf_path):
|
| 372 |
st.warning(f"File not found: {pdf_path}. Skipping.")
|
| 373 |
continue
|
| 374 |
+
mode_key = {"Single Page (High-Res)": "single",
|
| 375 |
+
"Two Pages (High-Res)": "twopage",
|
| 376 |
+
"All Pages (High-Res)": "allpages"}[mode]
|
| 377 |
snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key))
|
| 378 |
for snapshot in snapshots:
|
| 379 |
st.image(Image.open(snapshot), caption=snapshot, use_container_width=True)
|
| 380 |
st.session_state['asset_checkboxes'][snapshot] = True
|
| 381 |
+
# No update_gallery() call here; will update once later.
|
| 382 |
else:
|
| 383 |
st.warning("No PDFs selected for snapshotting! Check some boxes in the sidebar.")
|
| 384 |
|
| 385 |
+
# ----------------- TAB: Test OCR -----------------
|
| 386 |
with tab_ocr:
|
| 387 |
st.header("Test OCR 🔍")
|
| 388 |
all_files = get_gallery_files()
|
|
|
|
| 401 |
result = asyncio.run(process_ocr(image, output_file))
|
| 402 |
full_text += f"## {os.path.basename(file)}\n\n{result}\n\n"
|
| 403 |
entry = f"OCR Test: {file} -> {output_file}"
|
| 404 |
+
st.session_state['history'].append(entry)
|
|
|
|
| 405 |
md_output_file = f"full_ocr_{int(time.time())}.md"
|
| 406 |
with open(md_output_file, "w") as f:
|
| 407 |
f.write(full_text)
|
|
|
|
| 422 |
st.session_state['processing']['ocr'] = True
|
| 423 |
result = asyncio.run(process_ocr(image, output_file))
|
| 424 |
entry = f"OCR Test: {selected_file} -> {output_file}"
|
| 425 |
+
st.session_state['history'].append(entry)
|
|
|
|
| 426 |
st.text_area("OCR Result", result, height=200, key="ocr_result")
|
| 427 |
st.success(f"OCR output saved to {output_file}")
|
| 428 |
st.session_state['processing']['ocr'] = False
|
|
|
|
| 436 |
result = asyncio.run(process_ocr(image, output_file))
|
| 437 |
full_text += f"## Page {i + 1}\n\n{result}\n\n"
|
| 438 |
entry = f"OCR Test: {selected_file} Page {i + 1} -> {output_file}"
|
| 439 |
+
st.session_state['history'].append(entry)
|
|
|
|
| 440 |
md_output_file = f"full_ocr_{os.path.basename(selected_file)}_{int(time.time())}.md"
|
| 441 |
with open(md_output_file, "w") as f:
|
| 442 |
f.write(full_text)
|
|
|
|
| 445 |
else:
|
| 446 |
st.warning("No assets in gallery yet. Use Camera Snap or Download PDFs!")
|
| 447 |
|
| 448 |
+
# ----------------- TAB: Build Titan -----------------
|
| 449 |
with tab_build:
|
| 450 |
st.header("Build Titan 🌱")
|
| 451 |
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type")
|
| 452 |
base_model = st.selectbox(
|
| 453 |
"Select Tiny Model",
|
| 454 |
+
["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM"
|
| 455 |
else ["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"]
|
| 456 |
)
|
| 457 |
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
|
|
|
|
| 461 |
name=model_name, base_model=base_model, size="small", domain=domain
|
| 462 |
)
|
| 463 |
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
|
| 464 |
+
builder.load_model(base_model, config)
|
| 465 |
+
builder.save_model(config.model_path)
|
| 466 |
+
st.session_state['builder'] = builder
|
| 467 |
+
st.session_state['model_loaded'] = True
|
| 468 |
+
st.session_state['selected_model_type'] = model_type
|
| 469 |
+
st.session_state['selected_model'] = config.model_path
|
| 470 |
entry = f"Built {model_type} model: {model_name}"
|
| 471 |
+
st.session_state['history'].append(entry)
|
| 472 |
+
st.success(f"Model downloaded and saved to {config.model_path}! 🎉")
|
| 473 |
+
st.experimental_rerun()
|
| 474 |
|
| 475 |
+
# ----------------- TAB: Test Image Gen -----------------
|
| 476 |
with tab_imggen:
|
| 477 |
st.header("Test Image Gen 🎨")
|
| 478 |
all_files = get_gallery_files()
|
|
|
|
| 493 |
st.session_state['processing']['gen'] = True
|
| 494 |
result = asyncio.run(process_image_gen(prompt, output_file))
|
| 495 |
entry = f"Image Gen Test: {prompt} -> {output_file}"
|
| 496 |
+
st.session_state['history'].append(entry)
|
|
|
|
| 497 |
st.image(result, caption="Generated Image", use_container_width=True)
|
| 498 |
st.success(f"Image saved to {output_file}")
|
| 499 |
st.session_state['processing']['gen'] = False
|
| 500 |
else:
|
| 501 |
st.warning("No images or PDFs in gallery yet. Use Camera Snap or Download PDFs!")
|
|
|
|
| 502 |
|
| 503 |
+
# ----------------- TAB: PDF Process -----------------
|
| 504 |
with tab_pdf_process:
|
| 505 |
st.header("PDF Process")
|
| 506 |
st.subheader("Upload PDFs for GPT-based text extraction")
|
|
|
|
| 559 |
st.success(f"PDF processing complete. MD file saved as {output_filename}")
|
| 560 |
st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed PDF MD"), unsafe_allow_html=True)
|
| 561 |
|
| 562 |
+
# ----------------- TAB: Image Process -----------------
|
| 563 |
with tab_image_process:
|
| 564 |
st.header("Image Process")
|
| 565 |
st.subheader("Upload Images for GPT-based OCR")
|
|
|
|
| 584 |
st.success(f"Image processing complete. MD file saved as {output_filename}")
|
| 585 |
st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed Image MD"), unsafe_allow_html=True)
|
| 586 |
|
| 587 |
+
# ----------------- TAB: MD Gallery -----------------
|
| 588 |
with tab_md_gallery:
|
| 589 |
st.header("MD Gallery and GPT Processing")
|
| 590 |
gpt_models = ["gpt-4o", "gpt-4o-mini"]
|
|
|
|
| 636 |
st.warning("No MD files selected.")
|
| 637 |
else:
|
| 638 |
st.warning("No MD files found.")
|
| 639 |
+
|
| 640 |
+
# ----------------- FINAL SIDEBAR UPDATE -----------------
|
| 641 |
+
# Update the asset gallery once (using its container).
|
| 642 |
+
def update_gallery():
|
| 643 |
+
container = st.session_state['asset_gallery_container']
|
| 644 |
+
container.empty() # Clear previous gallery content.
|
| 645 |
+
all_files = get_gallery_files()
|
| 646 |
+
if all_files:
|
| 647 |
+
container.markdown("### Asset Gallery 📸📖")
|
| 648 |
+
cols = container.columns(2)
|
| 649 |
+
for idx, file in enumerate(all_files[:st.session_state['gallery_size']]):
|
| 650 |
+
with cols[idx % 2]:
|
| 651 |
+
st.session_state['unique_counter'] += 1
|
| 652 |
+
unique_id = st.session_state['unique_counter']
|
| 653 |
+
if file.endswith('.png'):
|
| 654 |
+
st.image(Image.open(file), caption=os.path.basename(file), use_container_width=True)
|
| 655 |
+
else:
|
| 656 |
+
doc = fitz.open(file)
|
| 657 |
+
pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5))
|
| 658 |
+
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 659 |
+
st.image(img, caption=os.path.basename(file), use_container_width=True)
|
| 660 |
+
doc.close()
|
| 661 |
+
checkbox_key = f"asset_{file}_{unique_id}"
|
| 662 |
+
st.session_state['asset_checkboxes'][file] = st.checkbox("Use for SFT/Input", value=st.session_state['asset_checkboxes'].get(file, False), key=checkbox_key)
|
| 663 |
+
mime_type = "image/png" if file.endswith('.png') else "application/pdf"
|
| 664 |
+
st.markdown(get_download_link(file, mime_type, "Snag It! 📥"), unsafe_allow_html=True)
|
| 665 |
+
if st.button("Zap It! 🗑️", key=f"delete_{file}_{unique_id}"):
|
| 666 |
+
os.remove(file)
|
| 667 |
+
st.session_state['asset_checkboxes'].pop(file, None)
|
| 668 |
+
st.success(f"Asset {os.path.basename(file)} vaporized! 💨")
|
| 669 |
+
st.experimental_rerun()
|
| 670 |
+
|
| 671 |
+
# Call the gallery update once after all tabs have been processed.
|
| 672 |
+
update_gallery()
|
| 673 |
+
|
| 674 |
+
# Finally, update the Action Logs and History in the sidebar.
|
| 675 |
+
st.sidebar.subheader("Action Logs 📜")
|
| 676 |
+
for record in log_records:
|
| 677 |
+
st.sidebar.write(f"{record.asctime} - {record.levelname} - {record.message}")
|
| 678 |
+
|
| 679 |
+
st.sidebar.subheader("History 📜")
|
| 680 |
+
for entry in st.session_state.get("history", []):
|
| 681 |
+
if entry is not None:
|
| 682 |
+
st.sidebar.write(entry)
|