Spaces:
Runtime error
Runtime error
| # libraries | |
| import os | |
| from huggingface_hub import InferenceClient | |
| from dotenv import load_dotenv | |
| import json | |
| import re | |
| #import easyocr | |
| from PIL import Image, ImageEnhance, ImageDraw | |
| import cv2 | |
| import numpy as np | |
| from paddleocr import PaddleOCR | |
| # Load environment variables from .env file | |
| load_dotenv() | |
| # Authenticate with Hugging Face | |
| HFT = os.getenv('HF_TOKEN') | |
| # Initialize the InferenceClient | |
| client = InferenceClient(model="mistralai/Mistral-7B-Instruct-v0.3", token=HFT) | |
| # Specify a custom model storage directory (ensure this path is writable) | |
| #model_storage_directory = '/app/models' | |
| # Create the reader object and set the model storage directory | |
| #reader = easyocr.Reader(['en'], model_storage_directory=model_storage_directory) | |
| def draw_boxes(image, bounds, color='red', width=2): | |
| draw = ImageDraw.Draw(image) | |
| for bound in bounds: | |
| p0, p1, p2, p3 = bound[0] | |
| draw.line([*p0, *p1, *p2, *p3, *p0], fill=color, width=width) | |
| return image | |
| #Image Quality upscaling | |
| # Load image using OpenCV | |
| def load_image(image_path): | |
| return cv2.imread(image_path) | |
| # Function for upscaling image using OpenCV's INTER_CUBIC or ESRGAN (if available) | |
| def upscale_image(image, scale=2): | |
| height, width = image.shape[:2] | |
| # Simple upscaling using cubic interpolation | |
| upscaled_image = cv2.resize(image, (width * scale, height * scale), interpolation=cv2.INTER_CUBIC) | |
| return upscaled_image | |
| # Function to denoise the image (reduce noise) | |
| def reduce_noise(image): | |
| return cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 7, 21) | |
| # Function to sharpen the image | |
| def sharpen_image(image): | |
| kernel = np.array([[0, -1, 0], | |
| [-1, 5, -1], | |
| [0, -1, 0]]) | |
| sharpened_image = cv2.filter2D(image, -1, kernel) | |
| return sharpened_image | |
| # Function to increase contrast and enhance details without changing color | |
| def enhance_image(image): | |
| # Convert from BGR to RGB for PIL processing, then back to BGR | |
| pil_img = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) | |
| enhancer = ImageEnhance.Contrast(pil_img) | |
| enhanced_image = enhancer.enhance(1.5) | |
| # Convert back to BGR | |
| enhanced_image_bgr = cv2.cvtColor(np.array(enhanced_image), cv2.COLOR_RGB2BGR) | |
| return enhanced_image_bgr | |
| # Complete function to process image | |
| def process_image(image_path, scale=2): | |
| # Load the image | |
| image = load_image(image_path) | |
| # Upscale the image | |
| upscaled_image = upscale_image(image, scale) | |
| # Reduce noise | |
| denoised_image = reduce_noise(upscaled_image) | |
| # Sharpen the image | |
| sharpened_image = sharpen_image(denoised_image) | |
| # Enhance the image contrast and details without changing color | |
| final_image = enhance_image(sharpened_image) | |
| return final_image | |
| def ocr_with_paddle(img): | |
| finaltext = '' | |
| ocr = PaddleOCR(lang='en', use_angle_cls=True) | |
| # img_path = 'exp.jpeg' | |
| result = ocr.ocr(img) | |
| for i in range(len(result[0])): | |
| text = result[0][i][1][0] | |
| finaltext += ' '+ text | |
| return finaltext | |
| def extract_text_from_images(image_paths, RESULT_FOLDER): | |
| all_extracted_texts = {} | |
| all_extracted_imgs={} | |
| for image_path in image_paths: | |
| # Enhance the image before OCR | |
| enhanced_image = process_image(image_path, scale=2) | |
| #bounds = reader.readtext(enhanced_image) | |
| # Draw boxes on the processed image | |
| img_result = Image.fromarray(enhanced_image) | |
| #draw_boxes(img_result, bounds) | |
| result_image_path = os.path.join(RESULT_FOLDER, f'result_{os.path.basename(image_path)}') | |
| img_result.save(result_image_path) # Save the processed image | |
| # Perform OCR on the enhanced image | |
| result=ocr_with_paddle(enhanced_image) | |
| # results = reader.readtext(enhanced_image) | |
| # extracted_text = " ".join([res[1] for res in results]) | |
| all_extracted_texts[image_path] =result | |
| all_extracted_imgs[image_path] = result_image_path | |
| # Convert to JSON-compatible structure | |
| all_extracted_imgs_json = {str(k): str(v) for k, v in all_extracted_imgs.items()} | |
| return all_extracted_texts,all_extracted_imgs_json | |
| # Function to call the Gemma model and process the output as Json | |
| def Data_Extractor(data, client=client): | |
| text = f'''Act as a Text extractor for the following text given in text: {data} | |
| extract text in the following output JSON string: | |
| {{ | |
| "Name": ["Identify and Extract All the person's name from the text."], | |
| "Designation": ["Extract All the designation or job title mentioned in the text."], | |
| "Company": ["Extract All the company or organization name if mentioned."], | |
| "Contact": ["Extract All phone number, including country codes if present."], | |
| "Address": ["Extract All the full postal address or location mentioned in the text."], | |
| "Email": ["Identify and Extract All valid email addresses mentioned in the text else 'Not found'."], | |
| "Link": ["Identify and Extract any website URLs or social media links present in the text."] | |
| }} | |
| Output: | |
| ''' | |
| # Call the API for inference | |
| response = client.text_generation(text, max_new_tokens=600)#, temperature=0.4, top_k=50, top_p=0.9, repetition_penalty=1.2) | |
| print("parse in text ---:",response) | |
| # Convert the response text to JSON | |
| try: | |
| json_data = json.loads(response) | |
| return json_data | |
| except json.JSONDecodeError as e: | |
| return {"error": f"Error decoding JSON: {e}"} | |
| # For have text compatible to the llm | |
| def json_to_llm_str(textJson): | |
| str='' | |
| for file,item in textJson.items(): | |
| str+=item + ' ' | |
| return str | |
| # Define the RE for extracting the contact details like number, mail , portfolio, website etc | |
| def extract_contact_details(text): | |
| # Regex patterns | |
| # Phone numbers with at least 5 digits in any segment | |
| combined_phone_regex = re.compile(r''' | |
| (?: | |
| #(?:(?:\+91[-.\s]?)?\d{5}[-.\s]?\d{5})|(?:\+?\d{1,3})?[-.\s()]?\d{5,}[-.\s()]?\d{5,}[-.\s()]?\d{1,9} | /^[\.-)( ]*([0-9]{3})[\.-)( ]*([0-9]{3})[\.-)( ]*([0-9]{4})$/ | | |
| \+1\s\(\d{3}\)\s\d{3}-\d{4} | # USA/Canada Intl +1 (XXX) XXX-XXXX | |
| \(\d{3}\)\s\d{3}-\d{4} | # USA/Canada STD (XXX) XXX-XXXX | |
| \(\d{3}\)\s\d{3}\s\d{4} | # USA/Canada (XXX) XXX XXXX | |
| \(\d{3}\)\s\d{3}\s\d{3} | # USA/Canada (XXX) XXX XXX | |
| \+1\d{10} | # +1 XXXXXXXXXX | |
| \d{10} | # XXXXXXXXXX | |
| \+44\s\d{4}\s\d{6} | # UK Intl +44 XXXX XXXXXX | |
| \+44\s\d{3}\s\d{3}\s\d{4} | # UK Intl +44 XXX XXX XXXX | |
| 0\d{4}\s\d{6} | # UK STD 0XXXX XXXXXX | |
| 0\d{3}\s\d{3}\s\d{4} | # UK STD 0XXX XXX XXXX | |
| \+44\d{10} | # +44 XXXXXXXXXX | |
| 0\d{10} | # 0XXXXXXXXXX | |
| \+61\s\d\s\d{4}\s\d{4} | # Australia Intl +61 X XXXX XXXX | |
| 0\d\s\d{4}\s\d{4} | # Australia STD 0X XXXX XXXX | |
| \+61\d{9} | # +61 XXXXXXXXX | |
| 0\d{9} | # 0XXXXXXXXX | |
| \+91\s\d{5}-\d{5} | # India Intl +91 XXXXX-XXXXX | |
| \+91\s\d{4}-\d{6} | # India Intl +91 XXXX-XXXXXX | |
| \+91\s\d{10} | # India Intl +91 XXXXXXXXXX | |
| 0\d{2}-\d{7} | # India STD 0XX-XXXXXXX | |
| \+91\d{10} | # +91 XXXXXXXXXX | |
| \+49\s\d{4}\s\d{8} | # Germany Intl +49 XXXX XXXXXXXX | |
| \+49\s\d{3}\s\d{7} | # Germany Intl +49 XXX XXXXXXX | |
| 0\d{3}\s\d{8} | # Germany STD 0XXX XXXXXXXX | |
| \+49\d{12} | # +49 XXXXXXXXXXXX | |
| \+49\d{10} | # +49 XXXXXXXXXX | |
| 0\d{11} | # 0XXXXXXXXXXX | |
| \+86\s\d{3}\s\d{4}\s\d{4} | # China Intl +86 XXX XXXX XXXX | |
| 0\d{3}\s\d{4}\s\d{4} | # China STD 0XXX XXXX XXXX | |
| \+86\d{11} | # +86 XXXXXXXXXXX | |
| \+81\s\d\s\d{4}\s\d{4} | # Japan Intl +81 X XXXX XXXX | |
| \+81\s\d{2}\s\d{4}\s\d{4} | # Japan Intl +81 XX XXXX XXXX | |
| 0\d\s\d{4}\s\d{4} | # Japan STD 0X XXXX XXXX | |
| \+81\d{10} | # +81 XXXXXXXXXX | |
| \+81\d{9} | # +81 XXXXXXXXX | |
| 0\d{9} | # 0XXXXXXXXX | |
| \+55\s\d{2}\s\d{5}-\d{4} | # Brazil Intl +55 XX XXXXX-XXXX | |
| \+55\s\d{2}\s\d{4}-\d{4} | # Brazil Intl +55 XX XXXX-XXXX | |
| 0\d{2}\s\d{4}\s\d{4} | # Brazil STD 0XX XXXX XXXX | |
| \+55\d{11} | # +55 XXXXXXXXXXX | |
| \+55\d{10} | # +55 XXXXXXXXXX | |
| 0\d{10} | # 0XXXXXXXXXX | |
| \+33\s\d\s\d{2}\s\d{2}\s\d{2}\s\d{2} | # France Intl +33 X XX XX XX XX | |
| 0\d\s\d{2}\s\d{2}\s\d{2}\s\d{2} | # France STD 0X XX XX XX XX | |
| \+33\d{9} | # +33 XXXXXXXXX | |
| 0\d{9} | # 0XXXXXXXXX | |
| \+7\s\d{3}\s\d{3}-\d{2}-\d{2} | # Russia Intl +7 XXX XXX-XX-XX | |
| 8\s\d{3}\s\d{3}-\d{2}-\d{2} | # Russia STD 8 XXX XXX-XX-XX | |
| \+7\d{10} | # +7 XXXXXXXXXX | |
| 8\d{10} | # 8 XXXXXXXXXX | |
| \+27\s\d{2}\s\d{3}\s\d{4} | # South Africa Intl +27 XX XXX XXXX | |
| 0\d{2}\s\d{3}\s\d{4} | # South Africa STD 0XX XXX XXXX | |
| \+27\d{9} | # +27 XXXXXXXXX | |
| 0\d{9} | # 0XXXXXXXXX | |
| \+52\s\d{3}\s\d{3}\s\d{4} | # Mexico Intl +52 XXX XXX XXXX | |
| \+52\s\d{2}\s\d{4}\s\d{4} | # Mexico Intl +52 XX XXXX XXXX | |
| 01\s\d{3}\s\d{4} | # Mexico STD 01 XXX XXXX | |
| \+52\d{10} | # +52 XXXXXXXXXX | |
| 01\d{7} | # 01 XXXXXXX | |
| \+234\s\d{3}\s\d{3}\s\d{4} | # Nigeria Intl +234 XXX XXX XXXX | |
| 0\d{3}\s\d{3}\s\d{4} | # Nigeria STD 0XXX XXX XXXX | |
| \+234\d{10} | # +234 XXXXXXXXXX | |
| 0\d{10} | # 0XXXXXXXXXX | |
| \+971\s\d\s\d{3}\s\d{4} | # UAE Intl +971 X XXX XXXX | |
| 0\d\s\d{3}\s\d{4} | # UAE STD 0X XXX XXXX | |
| \+971\d{8} | # +971 XXXXXXXX | |
| 0\d{8} | # 0XXXXXXXX | |
| \+54\s9\s\d{3}\s\d{3}\s\d{4} | # Argentina Intl +54 9 XXX XXX XXXX | |
| \+54\s\d{1}\s\d{4}\s\d{4} | # Argentina Intl +54 X XXXX XXXX | |
| 0\d{3}\s\d{4} | # Argentina STD 0XXX XXXX | |
| \+54\d{10} | # +54 9 XXXXXXXXXX | |
| \+54\d{9} | # +54 XXXXXXXXX | |
| 0\d{7} | # 0XXXXXXX | |
| \+966\s\d\s\d{3}\s\d{4} | # Saudi Intl +966 X XXX XXXX | |
| 0\d\s\d{3}\s\d{4} | # Saudi STD 0X XXX XXXX | |
| \+966\d{8} | # +966 XXXXXXXX | |
| 0\d{8} | # 0XXXXXXXX | |
| \+1\d{10} | # +1 XXXXXXXXXX | |
| \+1\s\d{3}\s\d{3}\s\d{4} | # +1 XXX XXX XXXX | |
| \d{5}\s\d{5} | # XXXXX XXXXX | |
| \d{10} | # XXXXXXXXXX | |
| \+44\d{10} | # +44 XXXXXXXXXX | |
| 0\d{10} | # 0XXXXXXXXXX | |
| \+61\d{9} | # +61 XXXXXXXXX | |
| 0\d{9} | # 0XXXXXXXXX | |
| \+91\d{10} | # +91 XXXXXXXXXX | |
| \+49\d{12} | # +49 XXXXXXXXXXXX | |
| \+49\d{10} | # +49 XXXXXXXXXX | |
| 0\d{11} | # 0XXXXXXXXXXX | |
| \+86\d{11} | # +86 XXXXXXXXXXX | |
| \+81\d{10} | # +81 XXXXXXXXXX | |
| \+81\d{9} | # +81 XXXXXXXXX | |
| 0\d{9} | # 0XXXXXXXXX | |
| \+55\d{11} | # +55 XXXXXXXXXXX | |
| \+55\d{10} | # +55 XXXXXXXXXX | |
| 0\d{10} | # 0XXXXXXXXXX | |
| \+33\d{9} | # +33 XXXXXXXXX | |
| 0\d{9} | # 0XXXXXXXXX | |
| \+7\d{10} | # +7 XXXXXXXXXX | |
| 8\d{10} | # 8 XXXXXXXXXX | |
| \+27\d{9} | # +27 XXXXXXXXX | |
| 0\d{9} | # 0XXXXXXXXX (South Africa STD) | |
| \+52\d{10} | # +52 XXXXXXXXXX | |
| 01\d{7} | # 01 XXXXXXX | |
| \+234\d{10} | # +234 XXXXXXXXXX | |
| 0\d{10} | # 0XXXXXXXXXX | |
| \+971\d{8} | # +971 XXXXXXXX | |
| 0\d{8} | # 0XXXXXXXX | |
| \+54\s9\s\d{10} | # +54 9 XXXXXXXXXX | |
| \+54\d{9} | # +54 XXXXXXXXX | |
| 0\d{7} | # 0XXXXXXX | |
| \+966\d{8} | # +966 XXXXXXXX | |
| 0\d{8} # 0XXXXXXXX | |
| \+\d{3}-\d{3}-\d{4} | |
| ) | |
| ''',re.VERBOSE) | |
| # Email regex | |
| email_regex = re.compile(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}\b') | |
| # Profile links regex, updated to avoid conflicts with email domains | |
| #link_regex = re.compile(r'\b(?:https?://)?(?:www\.)?(?:linkedin\.com|github\.com|indeed\.com|[A-Za-z0-9-]+\.[A-Za-z]{2,})[\w./?-]*\b') | |
| #link_regex = re.compile(r'\b(?:https?://)?(?:www\.)?[a-zA-Z0-9-]+\.(?:[a-zA-Z]{2,})(?:\.[a-zA-Z]{2,})?(?:\.[a-zA-Z]{2,})?(?:[/\w.-]*)*[\w/?&=-]*\b') | |
| link_regex = re.compile(r'\b(?:https?:\/\/)?(?:www\.)[a-zA-Z0-9-]+\.(?:com|co\.in|co|io|org|net|edu|gov|mil|int|uk|us|in|de|au|app|tech|xyz|info|biz|fr|dev)\b') | |
| # Find all matches in the text | |
| phone_numbers = [num for num in combined_phone_regex.findall(text) if len(num) >= 5] | |
| print("phone_numbers--->",phone_numbers) | |
| emails = email_regex.findall(text) | |
| links_RE = [link for link in link_regex.findall(text) if len(link)>=11] | |
| # Remove profile links that might conflict with emails | |
| links_RE = [link for link in links_RE if not any(email in link for email in emails)] | |
| return { | |
| "phone_numbers": phone_numbers, | |
| "emails": emails, | |
| "links_RE": links_RE | |
| } | |
| # preprocessing the data | |
| def process_extracted_text(extracted_text): | |
| # Load JSON data | |
| data = json.dumps(extracted_text, indent=4) | |
| data = json.loads(data) | |
| # Create a single dictionary to hold combined results | |
| combined_results = { | |
| "phone_numbers": [], | |
| "emails": [], | |
| "links_RE": [] | |
| } | |
| # Process each text entry | |
| for filename, text in data.items(): | |
| contact_details = extract_contact_details(text) | |
| # Extend combined results with the details from this file | |
| combined_results["phone_numbers"].extend(contact_details["phone_numbers"]) | |
| combined_results["emails"].extend(contact_details["emails"]) | |
| combined_results["links_RE"].extend(contact_details["links_RE"]) | |
| # Convert the combined results to JSON | |
| #combined_results_json = json.dumps(combined_results, indent=4) | |
| combined_results_json = combined_results | |
| # Print the final JSON results | |
| print("Combined contact details in JSON format:") | |
| print(combined_results_json) | |
| return combined_results_json | |
| # Process the model output for parsed result | |
| def process_resume_data(LLMdata,cont_data,extracted_text): | |
| # Initialize the processed data dictionary | |
| processed_data = { | |
| "name": [LLMdata.get('Name', 'Not found')], | |
| "contact_number": [LLMdata.get('Contact', 'Not found')], | |
| "Designation":[LLMdata.get('Designation', 'Not found')], | |
| "email": [LLMdata.get("Email", 'Not found')], | |
| "Location": [LLMdata.get('Address', 'Not found')], | |
| "Link": [LLMdata.get('Link', 'Not found')], | |
| "Company":[LLMdata.get('Company', 'Not found')], | |
| "extracted_text": extracted_text | |
| } | |
| processed_data['email'].extend(cont_data.get("emails", [])) | |
| processed_data['contact_number'].extend(cont_data.get("phone_numbers", [])) | |
| processed_data['Link'].extend(cont_data.get("links_RE", [])) | |
| return processed_data |