Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| def create_projection_layer(hidden_size: int, dropout: float, out_dim: int = None) -> nn.Sequential: | |
| """ | |
| Creates a projection layer with specified configurations. | |
| """ | |
| if out_dim is None: | |
| out_dim = hidden_size | |
| return nn.Sequential( | |
| nn.Linear(hidden_size, out_dim * 4), | |
| nn.ReLU(), | |
| nn.Dropout(dropout), | |
| nn.Linear(out_dim * 4, out_dim) | |
| ) | |
| class SpanQuery(nn.Module): | |
| def __init__(self, hidden_size, max_width, trainable=True): | |
| super().__init__() | |
| self.query_seg = nn.Parameter(torch.randn(hidden_size, max_width)) | |
| nn.init.uniform_(self.query_seg, a=-1, b=1) | |
| if not trainable: | |
| self.query_seg.requires_grad = False | |
| self.project = nn.Sequential( | |
| nn.Linear(hidden_size, hidden_size), | |
| nn.ReLU() | |
| ) | |
| def forward(self, h, *args): | |
| # h of shape [B, L, D] | |
| # query_seg of shape [D, max_width] | |
| span_rep = torch.einsum('bld, ds->blsd', h, self.query_seg) | |
| return self.project(span_rep) | |
| class SpanMLP(nn.Module): | |
| def __init__(self, hidden_size, max_width): | |
| super().__init__() | |
| self.mlp = nn.Linear(hidden_size, hidden_size * max_width) | |
| def forward(self, h, *args): | |
| # h of shape [B, L, D] | |
| # query_seg of shape [D, max_width] | |
| B, L, D = h.size() | |
| span_rep = self.mlp(h) | |
| span_rep = span_rep.view(B, L, -1, D) | |
| return span_rep.relu() | |
| class SpanCAT(nn.Module): | |
| def __init__(self, hidden_size, max_width): | |
| super().__init__() | |
| self.max_width = max_width | |
| self.query_seg = nn.Parameter(torch.randn(128, max_width)) | |
| self.project = nn.Sequential( | |
| nn.Linear(hidden_size + 128, hidden_size), | |
| nn.ReLU() | |
| ) | |
| def forward(self, h, *args): | |
| # h of shape [B, L, D] | |
| # query_seg of shape [D, max_width] | |
| B, L, D = h.size() | |
| h = h.view(B, L, 1, D).repeat(1, 1, self.max_width, 1) | |
| q = self.query_seg.view(1, 1, self.max_width, -1).repeat(B, L, 1, 1) | |
| span_rep = torch.cat([h, q], dim=-1) | |
| span_rep = self.project(span_rep) | |
| return span_rep | |
| class SpanConvBlock(nn.Module): | |
| def __init__(self, hidden_size, kernel_size, span_mode='conv_normal'): | |
| super().__init__() | |
| if span_mode == 'conv_conv': | |
| self.conv = nn.Conv1d(hidden_size, hidden_size, | |
| kernel_size=kernel_size) | |
| # initialize the weights | |
| nn.init.kaiming_uniform_(self.conv.weight, nonlinearity='relu') | |
| elif span_mode == 'conv_max': | |
| self.conv = nn.MaxPool1d(kernel_size=kernel_size, stride=1) | |
| elif span_mode == 'conv_mean' or span_mode == 'conv_sum': | |
| self.conv = nn.AvgPool1d(kernel_size=kernel_size, stride=1) | |
| self.span_mode = span_mode | |
| self.pad = kernel_size - 1 | |
| def forward(self, x): | |
| x = torch.einsum('bld->bdl', x) | |
| if self.pad > 0: | |
| x = F.pad(x, (0, self.pad), "constant", 0) | |
| x = self.conv(x) | |
| if self.span_mode == "conv_sum": | |
| x = x * (self.pad + 1) | |
| return torch.einsum('bdl->bld', x) | |
| class SpanConv(nn.Module): | |
| def __init__(self, hidden_size, max_width, span_mode): | |
| super().__init__() | |
| kernels = [i + 2 for i in range(max_width - 1)] | |
| self.convs = nn.ModuleList() | |
| for kernel in kernels: | |
| self.convs.append(SpanConvBlock(hidden_size, kernel, span_mode)) | |
| self.project = nn.Sequential( | |
| nn.ReLU(), | |
| nn.Linear(hidden_size, hidden_size) | |
| ) | |
| def forward(self, x, *args): | |
| span_reps = [x] | |
| for conv in self.convs: | |
| h = conv(x) | |
| span_reps.append(h) | |
| span_reps = torch.stack(span_reps, dim=-2) | |
| return self.project(span_reps) | |
| class SpanEndpointsBlock(nn.Module): | |
| def __init__(self, kernel_size): | |
| super().__init__() | |
| self.kernel_size = kernel_size | |
| def forward(self, x): | |
| B, L, D = x.size() | |
| span_idx = torch.LongTensor( | |
| [[i, i + self.kernel_size - 1] for i in range(L)]).to(x.device) | |
| x = F.pad(x, (0, 0, 0, self.kernel_size - 1), "constant", 0) | |
| # endrep | |
| start_end_rep = torch.index_select(x, dim=1, index=span_idx.view(-1)) | |
| start_end_rep = start_end_rep.view(B, L, 2, D) | |
| return start_end_rep | |
| class ConvShare(nn.Module): | |
| def __init__(self, hidden_size, max_width): | |
| super().__init__() | |
| self.max_width = max_width | |
| self.conv_weigth = nn.Parameter( | |
| torch.randn(hidden_size, hidden_size, max_width)) | |
| nn.init.kaiming_uniform_(self.conv_weigth, nonlinearity='relu') | |
| self.project = nn.Sequential( | |
| nn.ReLU(), | |
| nn.Linear(hidden_size, hidden_size) | |
| ) | |
| def forward(self, x, *args): | |
| span_reps = [] | |
| x = torch.einsum('bld->bdl', x) | |
| for i in range(self.max_width): | |
| pad = i | |
| x_i = F.pad(x, (0, pad), "constant", 0) | |
| conv_w = self.conv_weigth[:, :, :i + 1] | |
| out_i = F.conv1d(x_i, conv_w) | |
| span_reps.append(out_i.transpose(-1, -2)) | |
| out = torch.stack(span_reps, dim=-2) | |
| return self.project(out) | |
| def extract_elements(sequence, indices): | |
| B, L, D = sequence.shape | |
| K = indices.shape[1] | |
| # Expand indices to [B, K, D] | |
| expanded_indices = indices.unsqueeze(2).expand(-1, -1, D) | |
| # Gather the elements | |
| extracted_elements = torch.gather(sequence, 1, expanded_indices) | |
| return extracted_elements | |
| class SpanMarker(nn.Module): | |
| def __init__(self, hidden_size, max_width, dropout=0.4): | |
| super().__init__() | |
| self.max_width = max_width | |
| self.project_start = nn.Sequential( | |
| nn.Linear(hidden_size, hidden_size * 2, bias=True), | |
| nn.ReLU(), | |
| nn.Dropout(dropout), | |
| nn.Linear(hidden_size * 2, hidden_size, bias=True), | |
| ) | |
| self.project_end = nn.Sequential( | |
| nn.Linear(hidden_size, hidden_size * 2, bias=True), | |
| nn.ReLU(), | |
| nn.Dropout(dropout), | |
| nn.Linear(hidden_size * 2, hidden_size, bias=True), | |
| ) | |
| self.out_project = nn.Linear(hidden_size * 2, hidden_size, bias=True) | |
| def forward(self, h, span_idx): | |
| # h of shape [B, L, D] | |
| # query_seg of shape [D, max_width] | |
| B, L, D = h.size() | |
| # project start and end | |
| start_rep = self.project_start(h) | |
| end_rep = self.project_end(h) | |
| start_span_rep = extract_elements(start_rep, span_idx[:, :, 0]) | |
| end_span_rep = extract_elements(end_rep, span_idx[:, :, 1]) | |
| # concat start and end | |
| cat = torch.cat([start_span_rep, end_span_rep], dim=-1).relu() | |
| # project | |
| cat = self.out_project(cat) | |
| # reshape | |
| return cat.view(B, L, self.max_width, D) | |
| class SpanMarkerV0(nn.Module): | |
| """ | |
| Marks and projects span endpoints using an MLP. | |
| """ | |
| def __init__(self, hidden_size: int, max_width: int, dropout: float = 0.4): | |
| super().__init__() | |
| self.max_width = max_width | |
| self.project_start = create_projection_layer(hidden_size, dropout) | |
| self.project_end = create_projection_layer(hidden_size, dropout) | |
| self.out_project = create_projection_layer(hidden_size * 2, dropout, hidden_size) | |
| def forward(self, h: torch.Tensor, span_idx: torch.Tensor) -> torch.Tensor: | |
| B, L, D = h.size() | |
| start_rep = self.project_start(h) | |
| end_rep = self.project_end(h) | |
| start_span_rep = extract_elements(start_rep, span_idx[:, :, 0]) | |
| end_span_rep = extract_elements(end_rep, span_idx[:, :, 1]) | |
| cat = torch.cat([start_span_rep, end_span_rep], dim=-1).relu() | |
| return self.out_project(cat).view(B, L, self.max_width, D) | |
| class ConvShareV2(nn.Module): | |
| def __init__(self, hidden_size, max_width): | |
| super().__init__() | |
| self.max_width = max_width | |
| self.conv_weigth = nn.Parameter( | |
| torch.randn(hidden_size, hidden_size, max_width) | |
| ) | |
| nn.init.xavier_normal_(self.conv_weigth) | |
| def forward(self, x, *args): | |
| span_reps = [] | |
| x = torch.einsum('bld->bdl', x) | |
| for i in range(self.max_width): | |
| pad = i | |
| x_i = F.pad(x, (0, pad), "constant", 0) | |
| conv_w = self.conv_weigth[:, :, :i + 1] | |
| out_i = F.conv1d(x_i, conv_w) | |
| span_reps.append(out_i.transpose(-1, -2)) | |
| out = torch.stack(span_reps, dim=-2) | |
| return out | |
| class SpanRepLayer(nn.Module): | |
| """ | |
| Various span representation approaches | |
| """ | |
| def __init__(self, hidden_size, max_width, span_mode, **kwargs): | |
| super().__init__() | |
| if span_mode == 'marker': | |
| self.span_rep_layer = SpanMarker(hidden_size, max_width, **kwargs) | |
| elif span_mode == 'markerV0': | |
| self.span_rep_layer = SpanMarkerV0(hidden_size, max_width, **kwargs) | |
| elif span_mode == 'query': | |
| self.span_rep_layer = SpanQuery( | |
| hidden_size, max_width, trainable=True) | |
| elif span_mode == 'mlp': | |
| self.span_rep_layer = SpanMLP(hidden_size, max_width) | |
| elif span_mode == 'cat': | |
| self.span_rep_layer = SpanCAT(hidden_size, max_width) | |
| elif span_mode == 'conv_conv': | |
| self.span_rep_layer = SpanConv( | |
| hidden_size, max_width, span_mode='conv_conv') | |
| elif span_mode == 'conv_max': | |
| self.span_rep_layer = SpanConv( | |
| hidden_size, max_width, span_mode='conv_max') | |
| elif span_mode == 'conv_mean': | |
| self.span_rep_layer = SpanConv( | |
| hidden_size, max_width, span_mode='conv_mean') | |
| elif span_mode == 'conv_sum': | |
| self.span_rep_layer = SpanConv( | |
| hidden_size, max_width, span_mode='conv_sum') | |
| elif span_mode == 'conv_share': | |
| self.span_rep_layer = ConvShare(hidden_size, max_width) | |
| else: | |
| raise ValueError(f'Unknown span mode {span_mode}') | |
| def forward(self, x, *args): | |
| return self.span_rep_layer(x, *args) | |