Spaces:
Runtime error
Runtime error
Update backup/backup.py
Browse files- backup/backup.py +1 -17
backup/backup.py
CHANGED
|
@@ -7,14 +7,6 @@ model = GLiNER.from_pretrained("urchade/gliner_mediumv2.1")
|
|
| 7 |
text = """
|
| 8 |
lenskart m: (0)9428002330 Lenskart Store,Surat m: (0)9723817060) e:lenskartsurat@gmail.com Store Address UG-4.Ascon City.Opp.Maheshwari Bhavan,Citylight,Surat-395007"""
|
| 9 |
|
| 10 |
-
# Labels for entity prediction
|
| 11 |
-
# # Most GLiNER models should work best when entity types are in lower case or title case
|
| 12 |
-
# labels = ["Person", "Mail", "Number", "Address", "Organization","Designation"]
|
| 13 |
-
|
| 14 |
-
# # Perform entity prediction
|
| 15 |
-
# entities = model.predict_entities(text, labels, threshold=0.5)
|
| 16 |
-
|
| 17 |
-
|
| 18 |
def NER_Model(text):
|
| 19 |
|
| 20 |
labels = ["Person", "Mail", "Number", "Address", "Organization","Designation","Link"]
|
|
@@ -64,12 +56,4 @@ def NER_Model(text):
|
|
| 64 |
processed_data['Address']=[', '.join(processed_data['Address'])]
|
| 65 |
processed_data['extracted_text']=[text]
|
| 66 |
|
| 67 |
-
return processed_data
|
| 68 |
-
|
| 69 |
-
# result=NER_Model(text)
|
| 70 |
-
# print(result)
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
|
|
|
| 7 |
text = """
|
| 8 |
lenskart m: (0)9428002330 Lenskart Store,Surat m: (0)9723817060) e:lenskartsurat@gmail.com Store Address UG-4.Ascon City.Opp.Maheshwari Bhavan,Citylight,Surat-395007"""
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
def NER_Model(text):
|
| 11 |
|
| 12 |
labels = ["Person", "Mail", "Number", "Address", "Organization","Designation","Link"]
|
|
|
|
| 56 |
processed_data['Address']=[', '.join(processed_data['Address'])]
|
| 57 |
processed_data['extracted_text']=[text]
|
| 58 |
|
| 59 |
+
return processed_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|