Spaces:
Sleeping
Sleeping
Update retrival.py
Browse files- retrival.py +358 -75
retrival.py
CHANGED
|
@@ -1,17 +1,19 @@
|
|
| 1 |
from langchain_community.document_loaders import DirectoryLoader
|
| 2 |
-
from langchain.embeddings import
|
| 3 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 4 |
-
from langchain.schema import Document
|
| 5 |
from langchain_core.documents import Document
|
| 6 |
-
from langchain_openai import OpenAIEmbeddings
|
| 7 |
from langchain_community.vectorstores import Chroma
|
| 8 |
-
import openai
|
| 9 |
-
import openai
|
| 10 |
import os
|
| 11 |
import shutil
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
import uuid
|
| 13 |
-
|
| 14 |
-
|
| 15 |
|
| 16 |
# Configurations
|
| 17 |
UPLOAD_FOLDER = "./uploads"
|
|
@@ -19,86 +21,375 @@ VECTOR_DB_FOLDER = "./VectorDB"
|
|
| 19 |
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
| 20 |
os.makedirs(VECTOR_DB_FOLDER, exist_ok=True)
|
| 21 |
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
def load_document(data_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
|
|
|
| 26 |
loader = DirectoryLoader(data_path, glob="*.*")
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
# Creating the chunks of Data from the knowledge
|
| 32 |
def split_text(documents: list[Document]):
|
| 33 |
text_splitter = RecursiveCharacterTextSplitter(
|
| 34 |
-
chunk_size
|
| 35 |
-
chunk_overlap
|
| 36 |
-
length_function
|
| 37 |
add_start_index=True,
|
| 38 |
-
)
|
| 39 |
-
chunks = text_splitter.split_documents(documents)
|
|
|
|
|
|
|
| 40 |
print(f"Split {len(documents)} documents into {len(chunks)} chunks.")
|
| 41 |
-
|
| 42 |
return chunks
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
# CHROMA_PATH = f"./VectorDB/chroma_{name}"
|
| 48 |
-
# # Clear out the database first.
|
| 49 |
-
# if os.path.exists(CHROMA_PATH):
|
| 50 |
-
# shutil.rmtree(CHROMA_PATH)
|
| 51 |
-
|
| 52 |
-
# # Initialize SBERT embedding function
|
| 53 |
-
# embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 54 |
-
# db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
|
| 55 |
-
|
| 56 |
-
# # Add documents and persist the database
|
| 57 |
-
# db.add_documents(chunks)
|
| 58 |
-
# db.persist()
|
| 59 |
-
# # Return the database instance or a success status
|
| 60 |
-
# return db
|
| 61 |
|
| 62 |
-
def save_to_chroma(chunks: list[Document], name: str):
|
| 63 |
CHROMA_PATH = f"./VectorDB/chroma_{name}"
|
| 64 |
-
|
| 65 |
-
# Clear out the database first
|
| 66 |
if os.path.exists(CHROMA_PATH):
|
| 67 |
shutil.rmtree(CHROMA_PATH)
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
try:
|
| 70 |
-
# Initialize SBERT embedding function
|
| 71 |
embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
|
|
|
| 72 |
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
db.add_documents(chunks)
|
| 77 |
-
print("Persisting the database...")
|
| 78 |
db.persist()
|
| 79 |
-
print("
|
| 80 |
-
|
| 81 |
-
return db
|
| 82 |
except Exception as e:
|
| 83 |
-
print("Error while
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
CHROMA_PATH = f"./VectorDB/chroma_{db_name}"
|
| 99 |
-
print(f"
|
|
|
|
| 100 |
try:
|
| 101 |
-
documents = load_document(file_path)
|
| 102 |
print("Documents loaded successfully.")
|
| 103 |
except Exception as e:
|
| 104 |
print(f"Error loading documents: {e}")
|
|
@@ -112,17 +403,9 @@ def generate_data_store(file_path,db_name):
|
|
| 112 |
return
|
| 113 |
|
| 114 |
try:
|
| 115 |
-
asyncio.run(save_to_chroma(chunks, db_name))
|
| 116 |
print(f"Data saved to Chroma for database {db_name}.")
|
| 117 |
except Exception as e:
|
| 118 |
print(f"Error saving to Chroma: {e}")
|
| 119 |
return
|
| 120 |
-
# def main():
|
| 121 |
-
# data_path = "H:\\DEV PATEL\\RAG Project\\data1"
|
| 122 |
-
# db_name = "Product_data"
|
| 123 |
-
# generate_data_store(data_path,db_name)
|
| 124 |
-
|
| 125 |
-
# if __name__ == "__main__":
|
| 126 |
-
# main()
|
| 127 |
-
|
| 128 |
|
|
|
|
| 1 |
from langchain_community.document_loaders import DirectoryLoader
|
| 2 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 4 |
+
from langchain.schema import Document
|
| 5 |
from langchain_core.documents import Document
|
|
|
|
| 6 |
from langchain_community.vectorstores import Chroma
|
|
|
|
|
|
|
| 7 |
import os
|
| 8 |
import shutil
|
| 9 |
+
import asyncio
|
| 10 |
+
from unstructured.partition.pdf import partition_pdf
|
| 11 |
+
from unstructured.partition.auto import partition
|
| 12 |
+
import pytesseract
|
| 13 |
+
import os
|
| 14 |
+
import re
|
| 15 |
import uuid
|
| 16 |
+
pytesseract.pytesseract.tesseract_cmd = (r'/usr/bin/tesseract')
|
|
|
|
| 17 |
|
| 18 |
# Configurations
|
| 19 |
UPLOAD_FOLDER = "./uploads"
|
|
|
|
| 21 |
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
| 22 |
os.makedirs(VECTOR_DB_FOLDER, exist_ok=True)
|
| 23 |
|
| 24 |
+
########################################################################################################################################################
|
| 25 |
+
####-------------------------------------------------------------- Documnet Loader ---------------------------------------------------------------####
|
| 26 |
+
########################################################################################################################################################
|
| 27 |
+
# Loaders for loading Document text, tables and images from any file format.
|
| 28 |
+
#data_path=r"H:\DEV PATEL\2025\RAG Project\test_data\google data"
|
| 29 |
def load_document(data_path):
|
| 30 |
+
processed_documents = []
|
| 31 |
+
element_content = []
|
| 32 |
+
table_document = []
|
| 33 |
+
#having different process for the pdf
|
| 34 |
+
for root, _, files in os.walk(data_path):
|
| 35 |
+
for file in files:
|
| 36 |
+
file_path = os.path.join(root, file)
|
| 37 |
+
doc_id = str(uuid.uuid4()) # Generate a unique ID for the document
|
| 38 |
+
|
| 39 |
+
print(f"Processing document ID: {doc_id}, Path: {file_path}")
|
| 40 |
+
|
| 41 |
+
try:
|
| 42 |
+
# Determine the file type based on extension
|
| 43 |
+
filename, file_extension = os.path.splitext(file.lower())
|
| 44 |
+
image_output = f"H:/DEV PATEL/2025/RAG Project/Images/{filename}/"
|
| 45 |
+
# Use specific partition techniques based on file extension
|
| 46 |
+
if file_extension == ".pdf":
|
| 47 |
+
elements = partition_pdf(
|
| 48 |
+
filename=file_path,
|
| 49 |
+
strategy="hi_res", # Use layout detection
|
| 50 |
+
infer_table_structure=True,
|
| 51 |
+
hi_res_model_name="yolox",
|
| 52 |
+
extract_images_in_pdf=True,
|
| 53 |
+
extract_image_block_types=["Image","Table"],
|
| 54 |
+
extract_image_block_output_dir=image_output,
|
| 55 |
+
show_progress=True,
|
| 56 |
+
#chunking_strategy="by_title",
|
| 57 |
+
)
|
| 58 |
+
else:
|
| 59 |
+
# Default to auto partition if no specific handler is found
|
| 60 |
+
elements = partition(
|
| 61 |
+
filename=file_path,
|
| 62 |
+
strategy="hi_res",
|
| 63 |
+
infer_table_structure=True,
|
| 64 |
+
show_progress=True,
|
| 65 |
+
#chunking_strategy="by_title"
|
| 66 |
+
)
|
| 67 |
+
except Exception as e:
|
| 68 |
+
print(f"Failed to process document {file_path}: {e}")
|
| 69 |
+
continue
|
| 70 |
+
categorized_content = {
|
| 71 |
+
"tables": {"content": [], "Metadata": []},
|
| 72 |
+
"images": {"content": [], "Metadata": []},
|
| 73 |
+
"text": {"content": [], "Metadata": []},
|
| 74 |
+
"text2": {"content": [], "Metadata": []}
|
| 75 |
+
}
|
| 76 |
+
element_content.append(elements)
|
| 77 |
+
CNT=1
|
| 78 |
+
for chunk in elements:
|
| 79 |
+
# Safely extract metadata and text
|
| 80 |
+
chunk_type = str(type(chunk))
|
| 81 |
+
chunk_metadata = chunk.metadata.to_dict() if chunk.metadata else {}
|
| 82 |
+
chunk_text = getattr(chunk, "text", None)
|
| 83 |
+
|
| 84 |
+
# Separate content into categories
|
| 85 |
+
#if "Table" in chunk_type:
|
| 86 |
+
if any(
|
| 87 |
+
keyword in chunk_type
|
| 88 |
+
for keyword in [
|
| 89 |
+
"Table",
|
| 90 |
+
"TableChunk"]):
|
| 91 |
+
categorized_content["tables"]["content"].append(chunk_text)
|
| 92 |
+
categorized_content["tables"]["Metadata"].append(chunk_metadata)
|
| 93 |
+
|
| 94 |
+
#test1
|
| 95 |
+
TABLE_DATA=f"Table number {CNT} "+chunk_metadata.get("text_as_html", "")+" "
|
| 96 |
+
CNT+=1
|
| 97 |
+
categorized_content["text"]["content"].append(TABLE_DATA)
|
| 98 |
+
categorized_content["text"]["Metadata"].append(chunk_metadata)
|
| 99 |
+
|
| 100 |
+
elif "Image" in chunk_type:
|
| 101 |
+
categorized_content["images"]["content"].append(chunk_text)
|
| 102 |
+
categorized_content["images"]["Metadata"].append(chunk_metadata)
|
| 103 |
+
elif any(
|
| 104 |
+
keyword in chunk_type
|
| 105 |
+
for keyword in [
|
| 106 |
+
"CompositeElement",
|
| 107 |
+
"Text",
|
| 108 |
+
"NarrativeText",
|
| 109 |
+
"Title",
|
| 110 |
+
"Header",
|
| 111 |
+
"Footer",
|
| 112 |
+
"FigureCaption",
|
| 113 |
+
"ListItem",
|
| 114 |
+
"UncategorizedText",
|
| 115 |
+
"Formula",
|
| 116 |
+
"CodeSnippet",
|
| 117 |
+
"Address",
|
| 118 |
+
"EmailAddress",
|
| 119 |
+
"PageBreak",
|
| 120 |
+
]
|
| 121 |
+
):
|
| 122 |
+
categorized_content["text"]["content"].append(chunk_text)
|
| 123 |
+
categorized_content["text"]["Metadata"].append(chunk_metadata)
|
| 124 |
+
|
| 125 |
+
else:
|
| 126 |
+
continue
|
| 127 |
+
# Append processed document
|
| 128 |
+
processed_documents.append({
|
| 129 |
+
"doc_id": doc_id,
|
| 130 |
+
"source": file_path,
|
| 131 |
+
**categorized_content,
|
| 132 |
+
})
|
| 133 |
+
|
| 134 |
+
# Loop over tables and match text from the same document and page
|
| 135 |
+
|
| 136 |
+
for doc in processed_documents:
|
| 137 |
+
cnt=1 # count for storing number of the table
|
| 138 |
+
for table_metadata in doc.get("tables", {}).get("Metadata", []):
|
| 139 |
+
page_number = table_metadata.get("page_number")
|
| 140 |
+
source = doc.get("source")
|
| 141 |
+
page_content = ""
|
| 142 |
+
|
| 143 |
+
for text_metadata, text_content in zip(
|
| 144 |
+
doc.get("text", {}).get("Metadata", []),
|
| 145 |
+
doc.get("text", {}).get("content", [])
|
| 146 |
+
):
|
| 147 |
+
page_number2 = text_metadata.get("page_number")
|
| 148 |
+
source2 = doc.get("source")
|
| 149 |
+
|
| 150 |
+
if source == source2 and page_number == page_number2:
|
| 151 |
+
print(f"Matching text found for source: {source}, page: {page_number}")
|
| 152 |
+
page_content += f"{text_content} " # Concatenate text with a space
|
| 153 |
+
|
| 154 |
+
# Add the matched content to the table metadata
|
| 155 |
+
table_metadata["page_content"] =f"Table number {cnt} "+table_metadata.get("text_as_html", "")+" "+page_content.strip() # Remove trailing spaces and have the content proper here
|
| 156 |
+
table_metadata["text_as_html"] = table_metadata.get("text_as_html", "") # we are also storing it seperatly
|
| 157 |
+
table_metadata["Table_number"] = cnt # addiing the table number it will be use in retrival
|
| 158 |
+
cnt+=1
|
| 159 |
+
|
| 160 |
+
# Custom loader of document which will store the table along with the text on that page specifically
|
| 161 |
+
# making document of each table with its content
|
| 162 |
+
unique_id = str(uuid.uuid4())
|
| 163 |
+
table_document.append(
|
| 164 |
+
Document(
|
| 165 |
+
|
| 166 |
+
id =unique_id, # Add doc_id directly
|
| 167 |
+
page_content=table_metadata.get("page_content", ""), # Get page_content from metadata, default to empty string if missing
|
| 168 |
+
metadata={
|
| 169 |
+
"source": doc["source"],
|
| 170 |
+
"text_as_html": table_metadata.get("text_as_html", ""),
|
| 171 |
+
"filetype": table_metadata.get("filetype", ""),
|
| 172 |
+
"page_number": str(table_metadata.get("page_number", 0)), # Default to 0 if missing
|
| 173 |
+
"image_path": table_metadata.get("image_path", ""),
|
| 174 |
+
"file_directory": table_metadata.get("file_directory", ""),
|
| 175 |
+
"filename": table_metadata.get("filename", ""),
|
| 176 |
+
"Table_number": str(table_metadata.get("Table_number", 0)) # Default to 0 if missing
|
| 177 |
+
}
|
| 178 |
+
)
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
# Initialize a structure to group content by doc_id
|
| 182 |
+
grouped_by_doc_id = defaultdict(lambda: {
|
| 183 |
+
"text_content": [],
|
| 184 |
+
"metadata": None, # Metadata will only be set once per doc_id
|
| 185 |
+
})
|
| 186 |
+
|
| 187 |
+
for doc in processed_documents:
|
| 188 |
+
doc_id = doc.get("doc_id")
|
| 189 |
+
source = doc.get("source")
|
| 190 |
+
text_content = doc.get("text", {}).get("content", [])
|
| 191 |
+
metadata_list = doc.get("text", {}).get("Metadata", [])
|
| 192 |
+
|
| 193 |
+
# Merge text content
|
| 194 |
+
grouped_by_doc_id[doc_id]["text_content"].extend(text_content)
|
| 195 |
+
|
| 196 |
+
# Set metadata (if not already set)
|
| 197 |
+
if grouped_by_doc_id[doc_id]["metadata"] is None and metadata_list:
|
| 198 |
+
metadata = metadata_list[0] # Assuming metadata is consistent
|
| 199 |
+
grouped_by_doc_id[doc_id]["metadata"] = {
|
| 200 |
+
"source": source,
|
| 201 |
+
"filetype": metadata.get("filetype"),
|
| 202 |
+
"file_directory": metadata.get("file_directory"),
|
| 203 |
+
"filename": metadata.get("filename"),
|
| 204 |
+
"languages": str(metadata.get("languages")),
|
| 205 |
+
}
|
| 206 |
+
|
| 207 |
+
# Convert grouped content into Document objects
|
| 208 |
+
grouped_documents = []
|
| 209 |
+
for doc_id, data in grouped_by_doc_id.items():
|
| 210 |
+
grouped_documents.append(
|
| 211 |
+
Document(
|
| 212 |
+
id=doc_id,
|
| 213 |
+
page_content=" ".join(data["text_content"]).strip(),
|
| 214 |
+
metadata=data["metadata"],
|
| 215 |
+
)
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
# Output the grouped documents
|
| 219 |
+
for document in grouped_documents:
|
| 220 |
+
print(document)
|
| 221 |
|
| 222 |
+
|
| 223 |
+
#Dirctory loader for loading the text data only to specific db
|
| 224 |
loader = DirectoryLoader(data_path, glob="*.*")
|
| 225 |
+
documents = loader.load()
|
| 226 |
+
|
| 227 |
+
# update the metadata adding filname to the met
|
| 228 |
+
for doc in documents:
|
| 229 |
+
unique_id = str(uuid.uuid4())
|
| 230 |
+
doc.id = unique_id
|
| 231 |
+
path=doc.metadata.get("source")
|
| 232 |
+
match = re.search(r'([^\\]+\.[^\\]+)$', path)
|
| 233 |
+
doc.metadata.update({"filename":match.group(1)})
|
| 234 |
+
|
| 235 |
+
return documents,grouped_documents
|
| 236 |
+
#documents,processed_documents,table_document = load_document(data_path)
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
########################################################################################################################################################
|
| 240 |
+
####-------------------------------------------------------------- Chunking the Text --------------------------------------------------------------####
|
| 241 |
+
########################################################################################################################################################
|
| 242 |
|
|
|
|
| 243 |
def split_text(documents: list[Document]):
|
| 244 |
text_splitter = RecursiveCharacterTextSplitter(
|
| 245 |
+
chunk_size=1000,
|
| 246 |
+
chunk_overlap=500,
|
| 247 |
+
length_function=len,
|
| 248 |
add_start_index=True,
|
| 249 |
+
)
|
| 250 |
+
chunks = text_splitter.split_documents(documents) # splitting the document into chunks
|
| 251 |
+
for index in chunks:
|
| 252 |
+
index.metadata["start_index"]=str(index.metadata["start_index"]) # the converstion of int metadata to str was done to store it in sqlite3
|
| 253 |
print(f"Split {len(documents)} documents into {len(chunks)} chunks.")
|
|
|
|
| 254 |
return chunks
|
| 255 |
|
| 256 |
+
########################################################################################################################################################
|
| 257 |
+
####---------------------------------------------------- Creating and Storeing Data in Vector DB --------------------------------------------------####
|
| 258 |
+
########################################################################################################################################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
|
| 260 |
+
def save_to_chroma(chunks: list[Document], name: str, tables: list[Document]):
|
| 261 |
CHROMA_PATH = f"./VectorDB/chroma_{name}"
|
| 262 |
+
TABLE_PATH = f"./TableDB/chroma_{name}"
|
|
|
|
| 263 |
if os.path.exists(CHROMA_PATH):
|
| 264 |
shutil.rmtree(CHROMA_PATH)
|
| 265 |
+
if os.path.exists(TABLE_PATH):
|
| 266 |
+
shutil.rmtree(TABLE_PATH)
|
| 267 |
+
|
| 268 |
+
try:
|
| 269 |
+
# Load the embedding model
|
| 270 |
+
#embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 271 |
+
embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
| 272 |
+
# Create Chroma DB for documents using from_documents [NOTE: Some of the data is converted to string because int and float show null if added]
|
| 273 |
+
print("Creating document vector database...")
|
| 274 |
+
db = Chroma.from_documents(
|
| 275 |
+
documents=chunks,
|
| 276 |
+
embedding=embedding_function,
|
| 277 |
+
persist_directory=CHROMA_PATH,
|
| 278 |
+
)
|
| 279 |
+
print("Document database successfully saved.")
|
| 280 |
+
|
| 281 |
+
# Create Chroma DB for tables if available [NOTE: Some of the data is converted to string because int and float show null if added]
|
| 282 |
+
if tables:
|
| 283 |
+
print("Creating table vector database...")
|
| 284 |
+
tdb = Chroma.from_documents(
|
| 285 |
+
documents=tables,
|
| 286 |
+
embedding=embedding_function,
|
| 287 |
+
persist_directory=TABLE_PATH,
|
| 288 |
+
)
|
| 289 |
+
print("Table database successfully saved.")
|
| 290 |
+
else:
|
| 291 |
+
tdb = None
|
| 292 |
+
|
| 293 |
+
return db, tdb
|
| 294 |
+
except Exception as e:
|
| 295 |
+
print("Error while saving to Chroma:", e)
|
| 296 |
+
return None
|
| 297 |
+
|
| 298 |
+
# def get_unique_sources(chroma_path):
|
| 299 |
+
# db = Chroma(persist_directory=chroma_path)
|
| 300 |
+
# metadata_list = db.get()["metadatas"]
|
| 301 |
+
# unique_sources = {metadata["source"] for metadata in metadata_list if "source" in metadata}
|
| 302 |
+
# return list(unique_sources)
|
| 303 |
+
|
| 304 |
+
########################################################################################################################################################
|
| 305 |
+
####----------------------------------------------------------- Updating Existing Data in Vector DB -----------------------------------------------####
|
| 306 |
+
########################################################################################################################################################
|
| 307 |
+
|
| 308 |
+
def add_document_to_existing_db(new_documents: list[Document], db_name: str):
|
| 309 |
+
CHROMA_PATH = f"./VectorDB/chroma_{db_name}"
|
| 310 |
+
|
| 311 |
+
if not os.path.exists(CHROMA_PATH):
|
| 312 |
+
print(f"Database '{db_name}' does not exist. Please create it first.")
|
| 313 |
+
return
|
| 314 |
+
|
| 315 |
try:
|
|
|
|
| 316 |
embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 317 |
+
#embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
| 318 |
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
|
| 319 |
+
|
| 320 |
+
print("Adding new documents to the existing database...")
|
| 321 |
+
chunks = split_text(new_documents)
|
| 322 |
db.add_documents(chunks)
|
|
|
|
| 323 |
db.persist()
|
| 324 |
+
print("New documents added and database updated successfully.")
|
|
|
|
|
|
|
| 325 |
except Exception as e:
|
| 326 |
+
print("Error while adding documents to existing database:", e)
|
| 327 |
+
|
| 328 |
+
def delete_chunks_by_source(chroma_path, source_to_delete):
|
| 329 |
+
if not os.path.exists(chroma_path):
|
| 330 |
+
print(f"Database at path '{chroma_path}' does not exist.")
|
| 331 |
+
return
|
| 332 |
+
|
| 333 |
+
try:
|
| 334 |
+
#embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 335 |
+
embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
| 336 |
+
db = Chroma(persist_directory=chroma_path, embedding_function=embedding_function)
|
| 337 |
+
|
| 338 |
+
print(f"Retrieving all metadata to identify chunks with source '{source_to_delete}'...")
|
| 339 |
+
metadata_list = db.get()["metadatas"]
|
| 340 |
+
|
| 341 |
+
# Identify indices of chunks to delete
|
| 342 |
+
indices_to_delete = [
|
| 343 |
+
idx for idx, metadata in enumerate(metadata_list) if metadata.get("source") == source_to_delete
|
| 344 |
+
]
|
| 345 |
+
|
| 346 |
+
if not indices_to_delete:
|
| 347 |
+
print(f"No chunks found with source '{source_to_delete}'.")
|
| 348 |
+
return
|
| 349 |
+
|
| 350 |
+
print(f"Deleting {len(indices_to_delete)} chunks with source '{source_to_delete}'...")
|
| 351 |
+
db.delete(indices=indices_to_delete)
|
| 352 |
+
db.persist()
|
| 353 |
+
print("Chunks deleted and database updated successfully.")
|
| 354 |
+
except Exception as e:
|
| 355 |
+
print(f"Error while deleting chunks by source: {e}")
|
| 356 |
+
|
| 357 |
+
# # update a data store
|
| 358 |
+
# def update_data_store(file_path, db_name):
|
| 359 |
+
# CHROMA_PATH = f"./VectorDB/chroma_{db_name}"
|
| 360 |
+
# print(f"Filepath ===> {file_path} DB Name ====> {db_name}")
|
| 361 |
+
|
| 362 |
+
# try:
|
| 363 |
+
# documents,table_document = load_document(file_path)
|
| 364 |
+
# print("Documents loaded successfully.")
|
| 365 |
+
# except Exception as e:
|
| 366 |
+
# print(f"Error loading documents: {e}")
|
| 367 |
+
# return
|
| 368 |
+
|
| 369 |
+
# try:
|
| 370 |
+
# chunks = split_text(documents)
|
| 371 |
+
# print(f"Text split into {len(chunks)} chunks.")
|
| 372 |
+
# except Exception as e:
|
| 373 |
+
# print(f"Error splitting text: {e}")
|
| 374 |
+
# return
|
| 375 |
+
|
| 376 |
+
# try:
|
| 377 |
+
# asyncio.run(save_to_chroma(save_to_chroma(chunks, db_name, table_document)))
|
| 378 |
+
# print(f"Data saved to Chroma for database {db_name}.")
|
| 379 |
+
# except Exception as e:
|
| 380 |
+
# print(f"Error saving to Chroma: {e}")
|
| 381 |
+
# return
|
| 382 |
+
|
| 383 |
+
########################################################################################################################################################
|
| 384 |
+
####------------------------------------------------------- Combine Process of Load, Chunk and Store ----------------------------------------------####
|
| 385 |
+
########################################################################################################################################################
|
| 386 |
+
|
| 387 |
+
def generate_data_store(file_path, db_name):
|
| 388 |
CHROMA_PATH = f"./VectorDB/chroma_{db_name}"
|
| 389 |
+
print(f"Filepath ===> {file_path} DB Name ====> {db_name}")
|
| 390 |
+
|
| 391 |
try:
|
| 392 |
+
documents,processed_documents,table_document = load_document(file_path)
|
| 393 |
print("Documents loaded successfully.")
|
| 394 |
except Exception as e:
|
| 395 |
print(f"Error loading documents: {e}")
|
|
|
|
| 403 |
return
|
| 404 |
|
| 405 |
try:
|
| 406 |
+
asyncio.run(save_to_chroma(save_to_chroma(chunks, db_name, table_document)))
|
| 407 |
print(f"Data saved to Chroma for database {db_name}.")
|
| 408 |
except Exception as e:
|
| 409 |
print(f"Error saving to Chroma: {e}")
|
| 410 |
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 411 |
|