Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
from flask import Flask, render_template, request, redirect, url_for, session
|
| 2 |
import os
|
| 3 |
from werkzeug.utils import secure_filename
|
| 4 |
#from retrival import generate_data_store
|
|
@@ -13,6 +13,7 @@ from langchain.schema import Document
|
|
| 13 |
from langchain_core.documents import Document
|
| 14 |
from dotenv import load_dotenv
|
| 15 |
import re
|
|
|
|
| 16 |
import glob
|
| 17 |
import shutil
|
| 18 |
from werkzeug.utils import secure_filename
|
|
@@ -32,23 +33,25 @@ app.secret_key = os.urandom(24)
|
|
| 32 |
# Configurations
|
| 33 |
UPLOAD_FOLDER = "uploads/"
|
| 34 |
VECTOR_DB_FOLDER = "VectorDB/"
|
| 35 |
-
|
| 36 |
|
| 37 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
| 38 |
|
| 39 |
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
| 40 |
os.makedirs(VECTOR_DB_FOLDER, exist_ok=True)
|
| 41 |
-
|
| 42 |
|
| 43 |
# Global variables
|
| 44 |
CHROMA_PATH = None
|
| 45 |
-
|
| 46 |
-
#TABLE_PATH = None
|
| 47 |
|
| 48 |
-
|
|
|
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
| 52 |
|
| 53 |
Context:
|
| 54 |
{context}
|
|
@@ -59,28 +62,38 @@ Question:
|
|
| 59 |
{question}
|
| 60 |
|
| 61 |
Response:
|
| 62 |
-
|
| 63 |
-
'''
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
| 67 |
|
| 68 |
-
-
|
| 69 |
-
-
|
| 70 |
-
-
|
| 71 |
-
-
|
|
|
|
| 72 |
|
| 73 |
Context:
|
| 74 |
{context}
|
| 75 |
|
| 76 |
---
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
Question:
|
| 79 |
{question}
|
| 80 |
|
| 81 |
Response:
|
|
|
|
|
|
|
| 82 |
"""
|
| 83 |
|
|
|
|
| 84 |
#HFT = os.getenv('HF_TOKEN')
|
| 85 |
#client = InferenceClient(api_key=HFT)
|
| 86 |
|
|
@@ -96,59 +109,88 @@ def chat():
|
|
| 96 |
print("sessionhist1",session['history'])
|
| 97 |
|
| 98 |
global CHROMA_PATH
|
| 99 |
-
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
| 103 |
|
| 104 |
-
#if
|
| 105 |
-
#
|
| 106 |
-
#
|
|
|
|
|
|
|
| 107 |
|
| 108 |
if request.method == 'POST':
|
| 109 |
query_text = request.form['query_text']
|
| 110 |
if CHROMA_PATH is None:
|
| 111 |
-
|
|
|
|
| 112 |
|
|
|
|
| 113 |
# Load the selected Document Database
|
| 114 |
embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 115 |
#embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
| 116 |
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
#
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
# print("results------------------->",results_table)
|
| 130 |
-
# context_text_table = "\n\n---\n\n".join([doc.page_content for doc, _score in results_table])
|
| 131 |
-
|
| 132 |
-
# Prepare the prompt and query the model
|
| 133 |
-
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
|
| 134 |
-
prompt = prompt_template.format(context=context_text_document,question=query_text)
|
| 135 |
-
#prompt = prompt_template.format(context=context_text_document,table=context_text_table, question=query_text)
|
| 136 |
-
print("results------------------->",prompt)
|
| 137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
#Model Defining and its use
|
| 140 |
repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
| 141 |
HFT = os.environ["HF_TOKEN"]
|
| 142 |
llm = HuggingFaceEndpoint(
|
| 143 |
repo_id=repo_id,
|
| 144 |
-
max_tokens=3000,
|
|
|
|
| 145 |
temperature=0.8,
|
| 146 |
huggingfacehub_api_token=HFT,
|
| 147 |
)
|
| 148 |
|
| 149 |
data= llm(prompt)
|
| 150 |
#data = response.choices[0].message.content
|
| 151 |
-
|
| 152 |
# filtering the uneccessary context.
|
| 153 |
if re.search(r'\bmention\b|\bnot mention\b|\bnot mentioned\b|\bnot contain\b|\bnot include\b|\bnot provide\b|\bdoes not\b|\bnot explicitly\b|\bnot explicitly mentioned\b', data, re.IGNORECASE):
|
| 154 |
data = "We do not have information related to your query on our end."
|
|
@@ -160,90 +202,65 @@ def chat():
|
|
| 160 |
session.modified = True
|
| 161 |
print("sessionhist2",session['history'])
|
| 162 |
|
| 163 |
-
return render_template('chat.html', query_text=query_text, answer=data, history=session['history'])
|
| 164 |
|
| 165 |
-
return render_template('chat.html', history=session['history'])
|
| 166 |
|
| 167 |
-
'''
|
| 168 |
@app.route('/create-db', methods=['GET', 'POST'])
|
| 169 |
def create_db():
|
| 170 |
if request.method == 'POST':
|
| 171 |
-
db_name = request.form
|
|
|
|
|
|
|
| 172 |
|
| 173 |
-
# Get
|
| 174 |
-
files = request.files.getlist('folder')
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
| 176 |
return "No files uploaded", 400
|
| 177 |
|
| 178 |
-
#
|
| 179 |
-
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
| 180 |
-
# Define the base upload path
|
| 181 |
upload_base_path = os.path.join(app.config['UPLOAD_FOLDER'], secure_filename(db_name))
|
| 182 |
-
#upload_base_path = upload_base_path.replace("\\", "/")
|
| 183 |
print(f"Base Upload Path: {upload_base_path}")
|
| 184 |
os.makedirs(upload_base_path, exist_ok=True)
|
| 185 |
|
| 186 |
-
#
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
#file_path = file_path.replace("\\", "/")
|
| 192 |
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
# Get the file path and save it
|
| 199 |
-
file_path = os.path.join(upload_base_path, secure_filename(file.filename))
|
| 200 |
-
file.save(file_path)
|
| 201 |
-
|
| 202 |
-
# Generate datastore
|
| 203 |
-
generate_data_store(upload_base_path, db_name)
|
| 204 |
-
|
| 205 |
-
# # Clean up uploaded files (if needed)
|
| 206 |
-
#if os.path.exists(app.config['UPLOAD_FOLDER']):
|
| 207 |
-
# shutil.rmtree(app.config['UPLOAD_FOLDER'])
|
| 208 |
-
|
| 209 |
-
return redirect(url_for('list_dbs'))
|
| 210 |
-
|
| 211 |
-
return render_template('create_db.html')
|
| 212 |
-
'''
|
| 213 |
-
@app.route('/create-db', methods=['GET', 'POST'])
|
| 214 |
-
def create_db():
|
| 215 |
-
if request.method == 'POST':
|
| 216 |
-
db_name = request.form['db_name']
|
| 217 |
|
| 218 |
-
|
| 219 |
-
|
| 220 |
|
| 221 |
-
#
|
| 222 |
-
|
| 223 |
-
|
|
|
|
|
|
|
|
|
|
| 224 |
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
for file in folder_files:
|
| 232 |
-
file_path = os.path.join(upload_base_path, secure_filename(file.filename))
|
| 233 |
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
| 234 |
-
file.save(file_path)
|
| 235 |
|
| 236 |
-
|
| 237 |
-
# Process single files
|
| 238 |
-
for file in single_files:
|
| 239 |
-
file_path = os.path.join(upload_base_path, secure_filename(file.filename))
|
| 240 |
file.save(file_path)
|
|
|
|
|
|
|
| 241 |
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
# Generate datastore
|
| 246 |
-
generate_data_store(upload_base_path, db_name)
|
| 247 |
|
| 248 |
return redirect(url_for('list_dbs'))
|
| 249 |
|
|
@@ -256,21 +273,22 @@ def list_dbs():
|
|
| 256 |
|
| 257 |
@app.route('/select-db/<db_name>', methods=['POST'])
|
| 258 |
def select_db(db_name):
|
| 259 |
-
|
| 260 |
#Selecting the Documnet Vector DB
|
| 261 |
global CHROMA_PATH
|
|
|
|
| 262 |
print(f"Selected DB: {CHROMA_PATH}")
|
|
|
|
| 263 |
CHROMA_PATH = os.path.join(VECTOR_DB_FOLDER, db_name)
|
| 264 |
CHROMA_PATH = CHROMA_PATH.replace("\\", "/")
|
| 265 |
print(f"Selected DB: {CHROMA_PATH}")
|
|
|
|
| 266 |
|
| 267 |
-
#Selecting the Table Vector DB
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
# print(f"Selected DB: {TABLE_PATH}")
|
| 273 |
-
|
| 274 |
|
| 275 |
return redirect(url_for('chat'))
|
| 276 |
|
|
|
|
| 1 |
+
from flask import Flask, render_template, request, redirect, url_for, session, flash
|
| 2 |
import os
|
| 3 |
from werkzeug.utils import secure_filename
|
| 4 |
#from retrival import generate_data_store
|
|
|
|
| 13 |
from langchain_core.documents import Document
|
| 14 |
from dotenv import load_dotenv
|
| 15 |
import re
|
| 16 |
+
import numpy as np
|
| 17 |
import glob
|
| 18 |
import shutil
|
| 19 |
from werkzeug.utils import secure_filename
|
|
|
|
| 33 |
# Configurations
|
| 34 |
UPLOAD_FOLDER = "uploads/"
|
| 35 |
VECTOR_DB_FOLDER = "VectorDB/"
|
| 36 |
+
TABLE_DB_FOLDER = "TableDB/"
|
| 37 |
|
| 38 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
| 39 |
|
| 40 |
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
| 41 |
os.makedirs(VECTOR_DB_FOLDER, exist_ok=True)
|
| 42 |
+
os.makedirs(TABLE_DB_FOLDER, exist_ok=True)
|
| 43 |
|
| 44 |
# Global variables
|
| 45 |
CHROMA_PATH = None
|
| 46 |
+
TABLE_PATH = None
|
|
|
|
| 47 |
|
| 48 |
+
PROMPT_TEMPLATE_DOC = """
|
| 49 |
+
<s>[INST] You are a retrieval-augmented generation (RAG) assistant. Your task is to generate a response strictly based on the given context. Follow these instructions:
|
| 50 |
|
| 51 |
+
- Use only the provided context; do not add external information.
|
| 52 |
+
- The context contains multiple retrieved chunks separated by "###". Choose only the most relevant chunks to answer the question and ignore unrelated ones.
|
| 53 |
+
- If available, use the provided source information to support the response.
|
| 54 |
+
- Answer concisely and factually.
|
| 55 |
|
| 56 |
Context:
|
| 57 |
{context}
|
|
|
|
| 62 |
{question}
|
| 63 |
|
| 64 |
Response:
|
| 65 |
+
[/INST]
|
|
|
|
| 66 |
|
| 67 |
+
"""
|
| 68 |
+
# prompt if the document having the tables
|
| 69 |
+
PROMPT_TEMPLATE_TAB = """
|
| 70 |
+
<s>[INST] You are a retrieval-augmented generation (RAG) assistant. Your task is to generate a response strictly based on the given context. Follow these instructions:
|
| 71 |
|
| 72 |
+
- Use only the provided context; do not add external information.
|
| 73 |
+
- The context contains multiple retrieved chunks separated by "###". Choose only the most relevant chunks to answer the question and ignore unrelated ones.
|
| 74 |
+
- If available, use the provided source information to support the response.
|
| 75 |
+
- If a table is provided as html, incorporate its relevant details into the response while maintaining a structured format.
|
| 76 |
+
- Answer concisely and factually.
|
| 77 |
|
| 78 |
Context:
|
| 79 |
{context}
|
| 80 |
|
| 81 |
---
|
| 82 |
|
| 83 |
+
Table:
|
| 84 |
+
{table}
|
| 85 |
+
|
| 86 |
+
---
|
| 87 |
+
|
| 88 |
Question:
|
| 89 |
{question}
|
| 90 |
|
| 91 |
Response:
|
| 92 |
+
[/INST]
|
| 93 |
+
|
| 94 |
"""
|
| 95 |
|
| 96 |
+
|
| 97 |
#HFT = os.getenv('HF_TOKEN')
|
| 98 |
#client = InferenceClient(api_key=HFT)
|
| 99 |
|
|
|
|
| 109 |
print("sessionhist1",session['history'])
|
| 110 |
|
| 111 |
global CHROMA_PATH
|
| 112 |
+
global TABLE_PATH
|
| 113 |
|
| 114 |
+
old_db = session.get('old_db', None)
|
| 115 |
+
print(f"Selected DB: {CHROMA_PATH}")
|
| 116 |
|
| 117 |
+
# if old_db != None:
|
| 118 |
+
# if CHROMA_PATH != old_db:
|
| 119 |
+
# session['history'] = []
|
| 120 |
+
|
| 121 |
+
#print("sessionhist1",session['history'])
|
| 122 |
|
| 123 |
if request.method == 'POST':
|
| 124 |
query_text = request.form['query_text']
|
| 125 |
if CHROMA_PATH is None:
|
| 126 |
+
flash("Please select a database first!", "error")
|
| 127 |
+
return redirect(url_for('list_dbs'))
|
| 128 |
|
| 129 |
+
|
| 130 |
# Load the selected Document Database
|
| 131 |
embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 132 |
#embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
| 133 |
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
|
| 134 |
+
# Convert the query to its embedding vector
|
| 135 |
+
query_embedding = embedding_function.embed_query(query_text)
|
| 136 |
+
if isinstance(query_embedding, float):
|
| 137 |
+
query_embedding = [query_embedding]
|
| 138 |
+
# print(f"Query embedding: {query_embedding}")
|
| 139 |
+
# print(f"Type of query embedding: {type(query_embedding)}")
|
| 140 |
+
# print(f"Length of query embedding: {len(query_embedding) if isinstance(query_embedding, (list, np.ndarray)) else 'Not applicable'}")
|
| 141 |
+
results_document = db.similarity_search_by_vector_with_relevance_scores(
|
| 142 |
+
embedding=query_embedding, # Pass the query embedding
|
| 143 |
+
k=3,
|
| 144 |
+
#filter=filter_condition # Pass the filter condition
|
| 145 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
+
print("results------------------->",results_document)
|
| 148 |
+
print("============================================")
|
| 149 |
+
print("============================================")
|
| 150 |
+
|
| 151 |
+
context_text_document = " \n\n###\n\n ".join(
|
| 152 |
+
[f"Source: {doc.metadata.get('source', '')} Page_content:{doc.page_content}\n" for doc, _score in results_document]
|
| 153 |
+
)
|
| 154 |
|
| 155 |
+
# Loading Table Database only if available
|
| 156 |
+
if TABLE_PATH is not None:
|
| 157 |
+
#embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 158 |
+
embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
| 159 |
+
tdb = Chroma(persist_directory=TABLE_PATH, embedding_function=embedding_function)
|
| 160 |
+
results_table = tdb.similarity_search_by_vector_with_relevance_scores(
|
| 161 |
+
embedding=query_embedding, # Pass the query embedding
|
| 162 |
+
k=2
|
| 163 |
+
#filter=filter_condition # Pass the filter condition
|
| 164 |
+
)
|
| 165 |
+
print("results------------------->",results_table)
|
| 166 |
+
context_text_table = "\n\n---\n\n".join([doc.page_content for doc, _score in results_table])
|
| 167 |
+
|
| 168 |
+
# Prepare the prompt and query the model
|
| 169 |
+
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE_TAB)
|
| 170 |
+
prompt = prompt_template.format(context=context_text_document,table=context_text_table,question=query_text)
|
| 171 |
+
#prompt = prompt_template.format(context=context_text_document,table=context_text_table, question=query_text)
|
| 172 |
+
print("results------------------->",prompt)
|
| 173 |
+
else:
|
| 174 |
+
# Prepare the prompt and query the model
|
| 175 |
+
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE_DOC)
|
| 176 |
+
prompt = prompt_template.format(context=context_text_document,question=query_text)
|
| 177 |
+
#prompt = prompt_template.format(context=context_text_document,table=context_text_table, question=query_text)
|
| 178 |
+
print("results------------------->",prompt)
|
| 179 |
+
|
| 180 |
#Model Defining and its use
|
| 181 |
repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
| 182 |
HFT = os.environ["HF_TOKEN"]
|
| 183 |
llm = HuggingFaceEndpoint(
|
| 184 |
repo_id=repo_id,
|
| 185 |
+
#max_tokens=3000,
|
| 186 |
+
max_new_tokens=2000,
|
| 187 |
temperature=0.8,
|
| 188 |
huggingfacehub_api_token=HFT,
|
| 189 |
)
|
| 190 |
|
| 191 |
data= llm(prompt)
|
| 192 |
#data = response.choices[0].message.content
|
| 193 |
+
|
| 194 |
# filtering the uneccessary context.
|
| 195 |
if re.search(r'\bmention\b|\bnot mention\b|\bnot mentioned\b|\bnot contain\b|\bnot include\b|\bnot provide\b|\bdoes not\b|\bnot explicitly\b|\bnot explicitly mentioned\b', data, re.IGNORECASE):
|
| 196 |
data = "We do not have information related to your query on our end."
|
|
|
|
| 202 |
session.modified = True
|
| 203 |
print("sessionhist2",session['history'])
|
| 204 |
|
| 205 |
+
return render_template('chat.html', query_text=query_text, answer=data, history=session['history'],old_db=CHROMA_PATH)
|
| 206 |
|
| 207 |
+
return render_template('chat.html', history=session['history'], old_db=CHROMA_PATH)
|
| 208 |
|
|
|
|
| 209 |
@app.route('/create-db', methods=['GET', 'POST'])
|
| 210 |
def create_db():
|
| 211 |
if request.method == 'POST':
|
| 212 |
+
db_name = request.form.get('db_name', '').strip()
|
| 213 |
+
if not db_name:
|
| 214 |
+
return "Database name is required", 400
|
| 215 |
|
| 216 |
+
# Get uploaded files
|
| 217 |
+
files = request.files.getlist('folder') # Folder uploads (multiple files)
|
| 218 |
+
single_files = request.files.getlist('file') # Single file uploads
|
| 219 |
+
|
| 220 |
+
# Check if any file is uploaded
|
| 221 |
+
if not files and not single_files:
|
| 222 |
return "No files uploaded", 400
|
| 223 |
|
| 224 |
+
# Create upload directory
|
|
|
|
|
|
|
| 225 |
upload_base_path = os.path.join(app.config['UPLOAD_FOLDER'], secure_filename(db_name))
|
|
|
|
| 226 |
print(f"Base Upload Path: {upload_base_path}")
|
| 227 |
os.makedirs(upload_base_path, exist_ok=True)
|
| 228 |
|
| 229 |
+
# Process folder files (if any)
|
| 230 |
+
if files:
|
| 231 |
+
for file in files:
|
| 232 |
+
file_name = secure_filename(file.filename) # Ensure the file name is safe
|
| 233 |
+
file_path = os.path.join(upload_base_path, file_name)
|
|
|
|
| 234 |
|
| 235 |
+
# Ensure the directory exists before saving the file
|
| 236 |
+
print(f"Saving to: {file_path}")
|
| 237 |
+
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
|
| 239 |
+
# Save the file
|
| 240 |
+
file.save(file_path)
|
| 241 |
|
| 242 |
+
# Process single files (if any)
|
| 243 |
+
if single_files:
|
| 244 |
+
for file in single_files:
|
| 245 |
+
if file.filename == '':
|
| 246 |
+
print("Skipping empty single file")
|
| 247 |
+
continue # Skip empty uploads
|
| 248 |
|
| 249 |
+
# Create full file path for single file upload
|
| 250 |
+
file_name = secure_filename(file.filename)
|
| 251 |
+
file_path = os.path.join(upload_base_path, file_name)
|
| 252 |
|
| 253 |
+
# Ensure the directory exists before saving the file
|
| 254 |
+
print(f"Saving single file to: {file_path}")
|
|
|
|
|
|
|
| 255 |
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
|
|
|
| 256 |
|
| 257 |
+
# Save the file
|
|
|
|
|
|
|
|
|
|
| 258 |
file.save(file_path)
|
| 259 |
+
print("file------------->",file)
|
| 260 |
+
print("file_path------------->",file_path)
|
| 261 |
|
| 262 |
+
# Generate datastore (example task, depending on your logic)
|
| 263 |
+
asyncio.run(generate_data_store(upload_base_path, db_name))
|
|
|
|
|
|
|
|
|
|
| 264 |
|
| 265 |
return redirect(url_for('list_dbs'))
|
| 266 |
|
|
|
|
| 273 |
|
| 274 |
@app.route('/select-db/<db_name>', methods=['POST'])
|
| 275 |
def select_db(db_name):
|
| 276 |
+
flash(f"{db_name} Database has been selected", "table_selected")
|
| 277 |
#Selecting the Documnet Vector DB
|
| 278 |
global CHROMA_PATH
|
| 279 |
+
global TABLE_PATH
|
| 280 |
print(f"Selected DB: {CHROMA_PATH}")
|
| 281 |
+
print("-----------------------------------------------------1----")
|
| 282 |
CHROMA_PATH = os.path.join(VECTOR_DB_FOLDER, db_name)
|
| 283 |
CHROMA_PATH = CHROMA_PATH.replace("\\", "/")
|
| 284 |
print(f"Selected DB: {CHROMA_PATH}")
|
| 285 |
+
print("-----------------------------------------------------2----")
|
| 286 |
|
| 287 |
+
# Selecting the Table Vector DB
|
| 288 |
+
table_db_path = os.path.join(TABLE_DB_FOLDER, db_name)
|
| 289 |
+
table_db_path = table_db_path.replace("\\", "/")
|
| 290 |
+
TABLE_PATH = table_db_path if os.path.exists(table_db_path) else None
|
| 291 |
+
print(f"Selected Table DB: {TABLE_PATH}")
|
|
|
|
|
|
|
| 292 |
|
| 293 |
return redirect(url_for('chat'))
|
| 294 |
|