Update app.py
Browse files
app.py
CHANGED
|
@@ -1,117 +1,48 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
-
# app.py - Health Reports processing agent (PDF -> cleaned text -> structured JSON)
|
| 3 |
-
|
| 4 |
import os
|
| 5 |
import json
|
| 6 |
import logging
|
| 7 |
import re
|
|
|
|
| 8 |
from pathlib import Path
|
| 9 |
-
from
|
| 10 |
-
from werkzeug.utils import secure_filename
|
| 11 |
from flask import Flask, request, jsonify
|
| 12 |
from flask_cors import CORS
|
| 13 |
from dotenv import load_dotenv
|
| 14 |
-
from unstructured.partition.pdf import partition_pdf
|
| 15 |
-
|
| 16 |
-
# Bloatectomy class (as per the source you provided)
|
| 17 |
from bloatectomy import bloatectomy
|
| 18 |
-
|
| 19 |
-
# LLM / agent
|
| 20 |
from langchain_groq import ChatGroq
|
| 21 |
-
from langgraph.prebuilt import create_react_agent
|
| 22 |
-
|
| 23 |
-
# LangGraph imports
|
| 24 |
-
from langgraph.graph import StateGraph, START, END
|
| 25 |
from typing_extensions import TypedDict, NotRequired
|
| 26 |
|
| 27 |
-
# --- Logging
|
| 28 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
|
| 29 |
-
logger = logging.getLogger("
|
| 30 |
|
| 31 |
-
# ---
|
| 32 |
load_dotenv()
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
llm = ChatGroq(
|
| 41 |
model=os.getenv("LLM_MODEL", "meta-llama/llama-4-scout-17b-16e-instruct"),
|
| 42 |
temperature=0.0,
|
| 43 |
-
max_tokens=
|
|
|
|
| 44 |
)
|
| 45 |
|
| 46 |
-
# Top-level strict system prompt for report JSON pieces (each node will use a more specific prompt)
|
| 47 |
-
NODE_BASE_INSTRUCTIONS = """
|
| 48 |
-
You are HealthAI — a clinical assistant producing JSON for downstream processing.
|
| 49 |
-
Produce only valid JSON (no extra text). Follow field types exactly. If missing data, return empty strings or empty arrays.
|
| 50 |
-
Be conservative: do not assert diagnoses; provide suggestions and ask physician confirmation where needed.
|
| 51 |
-
"""
|
| 52 |
-
|
| 53 |
-
# Build a generic agent and a JSON resolver agent (to fix broken JSON from LLM)
|
| 54 |
-
agent = create_react_agent(model=llm, tools=[], prompt=NODE_BASE_INSTRUCTIONS)
|
| 55 |
-
agent_json_resolver = create_react_agent(model=llm, tools=[], prompt="""
|
| 56 |
-
You are a JSON fixer. Input: a possibly-malformed JSON-like text. Output: valid JSON only (enclosed in triple backticks).
|
| 57 |
-
Fix missing quotes, trailing commas, unescaped newlines, stray assistant labels, and ensure schema compliance.
|
| 58 |
-
""")
|
| 59 |
-
|
| 60 |
-
# -------------------- JSON extraction / sanitizer ---------------------------
|
| 61 |
-
def extract_json_from_llm_response(raw_response: str) -> dict:
|
| 62 |
-
try:
|
| 63 |
-
# --- 1) Pull out the JSON code-block if present ---
|
| 64 |
-
md = re.search(r"```(?:json)?\s*([\s\S]*?)\s*```", raw_response)
|
| 65 |
-
json_string = md.group(1).strip() if md else raw_response
|
| 66 |
-
|
| 67 |
-
# --- 2) Trim to the outermost { … } so we drop any prefix/suffix junk ---
|
| 68 |
-
first, last = json_string.find('{'), json_string.rfind('}')
|
| 69 |
-
if 0 <= first < last:
|
| 70 |
-
json_string = json_string[first:last+1]
|
| 71 |
-
|
| 72 |
-
# --- 3) PRE-CLEANUP: remove rogue assistant labels, fix boolean quotes ---
|
| 73 |
-
json_string = re.sub(r'\b\w+\s*{', '{', json_string)
|
| 74 |
-
json_string = re.sub(r'"assistant"\s*:', '', json_string)
|
| 75 |
-
json_string = re.sub(r'\b(false|true)"', r'\1', json_string)
|
| 76 |
-
|
| 77 |
-
# --- 4) Escape embedded quotes in long string fields (best-effort) ---
|
| 78 |
-
def _esc(m):
|
| 79 |
-
prefix, body = m.group(1), m.group(2)
|
| 80 |
-
return prefix + body.replace('"', r'\"')
|
| 81 |
-
json_string = re.sub(
|
| 82 |
-
r'("logic"\s*:\s*")([\s\S]+?)(?=",\s*"[A-Za-z_]\w*"\s*:\s*)',
|
| 83 |
-
_esc,
|
| 84 |
-
json_string
|
| 85 |
-
)
|
| 86 |
-
|
| 87 |
-
# --- 5) Remove trailing commas before } or ] ---
|
| 88 |
-
json_string = re.sub(r',\s*(?=[}\],])', '', json_string)
|
| 89 |
-
json_string = re.sub(r',\s*,', ',', json_string)
|
| 90 |
-
|
| 91 |
-
# --- 6) Balance braces if obvious excess ---
|
| 92 |
-
ob, cb = json_string.count('{'), json_string.count('}')
|
| 93 |
-
if cb > ob:
|
| 94 |
-
excess = cb - ob
|
| 95 |
-
json_string = json_string.rstrip()[:-excess]
|
| 96 |
-
|
| 97 |
-
# --- 7) Escape literal newlines inside strings so json.loads can parse ---
|
| 98 |
-
def _escape_newlines_in_strings(s: str) -> str:
|
| 99 |
-
return re.sub(
|
| 100 |
-
r'"((?:[^"\\]|\\.)*?)"',
|
| 101 |
-
lambda m: '"' + m.group(1).replace('\n', '\\n').replace('\r', '\\r') + '"',
|
| 102 |
-
s,
|
| 103 |
-
flags=re.DOTALL
|
| 104 |
-
)
|
| 105 |
-
json_string = _escape_newlines_in_strings(json_string)
|
| 106 |
-
|
| 107 |
-
# Final parse
|
| 108 |
-
return json.loads(json_string)
|
| 109 |
-
except Exception as e:
|
| 110 |
-
logger.error(f"Failed to extract JSON from LLM response: {e}")
|
| 111 |
-
raise
|
| 112 |
-
|
| 113 |
-
# -------------------- Utility: Bloatectomy wrapper ------------------------
|
| 114 |
def clean_notes_with_bloatectomy(text: str, style: str = "remov") -> str:
|
|
|
|
| 115 |
try:
|
| 116 |
b = bloatectomy(text, style=style, output="html")
|
| 117 |
tokens = getattr(b, "tokens", None)
|
|
@@ -122,480 +53,185 @@ def clean_notes_with_bloatectomy(text: str, style: str = "remov") -> str:
|
|
| 122 |
logger.exception("Bloatectomy cleaning failed; returning original text")
|
| 123 |
return text
|
| 124 |
|
| 125 |
-
#
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
continue
|
| 150 |
-
return drugs_flags
|
| 151 |
-
except Exception:
|
| 152 |
-
logger.exception("Error in addToDrugs_line")
|
| 153 |
-
return drugs_flags
|
| 154 |
-
|
| 155 |
-
def extract_medications_from_text(text: str) -> List[str]:
|
| 156 |
-
try:
|
| 157 |
-
ssri_map, ssri_generics = readDrugs_from_file(SSRI_FILE)
|
| 158 |
-
misc_map, misc_generics = readDrugs_from_file(MISC_FILE)
|
| 159 |
-
combined_map = {**ssri_map, **misc_map}
|
| 160 |
-
combined_generics = []
|
| 161 |
-
if ssri_generics:
|
| 162 |
-
combined_generics.extend(ssri_generics)
|
| 163 |
-
if misc_generics:
|
| 164 |
-
combined_generics.extend(misc_generics)
|
| 165 |
-
|
| 166 |
-
flags = [0]* len(combined_generics)
|
| 167 |
-
meds_found = set()
|
| 168 |
-
for ln in text.splitlines():
|
| 169 |
-
ln = ln.strip()
|
| 170 |
-
if not ln:
|
| 171 |
-
continue
|
| 172 |
-
if combined_map:
|
| 173 |
-
flags = addToDrugs_line(ln, flags, combined_map, combined_generics)
|
| 174 |
-
m = re.search(r"\b(Rx|Drug|Medication|Prescribed|Tablet)\s*[:\-]?\s*([A-Za-z0-9\-\s/\.]+)", ln, re.I)
|
| 175 |
-
if m:
|
| 176 |
-
meds_found.add(m.group(2).strip())
|
| 177 |
-
m2 = re.findall(r"\b([A-Z][a-z0-9\-]{2,}\s*(?:[0-9]{1,4}\s*(?:mg|mcg|g|IU))?)", ln)
|
| 178 |
-
for s in m2:
|
| 179 |
-
if re.search(r"\b(mg|mcg|g|IU)\b", s, re.I):
|
| 180 |
-
meds_found.add(s.strip())
|
| 181 |
-
for i, f in enumerate(flags):
|
| 182 |
-
if f == 1:
|
| 183 |
-
meds_found.add(combined_generics[i])
|
| 184 |
-
return list(meds_found)
|
| 185 |
-
except Exception:
|
| 186 |
-
logger.exception("Failed to extract medications from text")
|
| 187 |
-
return []
|
| 188 |
-
|
| 189 |
-
# -------------------- Node prompts --------------------------
|
| 190 |
-
PATIENT_NODE_PROMPT = """
|
| 191 |
-
You will extract patientDetails from the provided document texts.
|
| 192 |
-
Return ONLY JSON with this exact shape:
|
| 193 |
-
{ "patientDetails": {"name": "", "age": "", "sex": "", "pid": ""} }
|
| 194 |
-
Fill fields using text evidence or leave empty strings.
|
| 195 |
"""
|
| 196 |
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
Return ONLY JSON with this exact shape:
|
| 206 |
-
{
|
| 207 |
-
"reports": [
|
| 208 |
-
{
|
| 209 |
-
"testName": "",
|
| 210 |
-
"dateReported": "",
|
| 211 |
-
"timeReported": "",
|
| 212 |
-
"abnormalFindings": [
|
| 213 |
-
{"investigation": "", "result": 0, "unit": "", "status": "", "referenceValue": ""}
|
| 214 |
-
],
|
| 215 |
-
"interpretation": "",
|
| 216 |
-
"trends": []
|
| 217 |
-
}
|
| 218 |
-
]
|
| 219 |
-
}
|
| 220 |
-
- Include only findings that are outside reference ranges OR explicitly called 'abnormal' in the report.
|
| 221 |
-
- For result numeric parsing, prefer numeric values; if not numeric, keep original string.
|
| 222 |
-
- Use statuses: Low, High, Borderline, Positive, Negative, Normal.
|
| 223 |
-
"""
|
| 224 |
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
{ "overallAnalysis": { "summary": "", "recommendations": "", "longTermTrends": "",""risk_prediction": "","drug_interaction": "" } }
|
| 229 |
-
Be conservative, evidence-based, and suggest follow-up steps for physicians.
|
| 230 |
-
"""
|
| 231 |
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
|
| 241 |
-
# -------------------- Node helpers -------------------------
|
| 242 |
-
def call_node_agent(node_prompt: str, payload: dict) -> dict:
|
| 243 |
-
"""
|
| 244 |
-
Call the generic agent with a targeted node prompt and the payload.
|
| 245 |
-
Tries to parse JSON. If parsing fails, uses the JSON resolver agent once.
|
| 246 |
-
"""
|
| 247 |
try:
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
resp = agent.invoke({"messages": [{"role": "user", "content": json.dumps(content)}]})
|
| 253 |
-
|
| 254 |
-
# Extract raw text from AIMessage or other response types
|
| 255 |
-
raw = None
|
| 256 |
-
if isinstance(resp, str):
|
| 257 |
-
raw = resp
|
| 258 |
-
elif hasattr(resp, "content"): # AIMessage or similar
|
| 259 |
-
raw = resp.content
|
| 260 |
-
elif isinstance(resp, dict):
|
| 261 |
-
msgs = resp.get("messages")
|
| 262 |
-
if msgs:
|
| 263 |
-
last_msg = msgs[-1]
|
| 264 |
-
if isinstance(last_msg, str):
|
| 265 |
-
raw = last_msg
|
| 266 |
-
elif hasattr(last_msg, "content"):
|
| 267 |
-
raw = last_msg.content
|
| 268 |
-
elif isinstance(last_msg, dict):
|
| 269 |
-
raw = last_msg.get("content", "")
|
| 270 |
-
else:
|
| 271 |
-
raw = str(last_msg)
|
| 272 |
-
else:
|
| 273 |
-
raw = json.dumps(resp)
|
| 274 |
-
else:
|
| 275 |
-
raw = str(resp)
|
| 276 |
|
| 277 |
-
|
|
|
|
|
|
|
|
|
|
| 278 |
return parsed
|
|
|
|
|
|
|
|
|
|
| 279 |
|
| 280 |
-
|
| 281 |
-
logger.warning("Node agent JSON parse failed: %s. Attempting JSON resolver.", e)
|
| 282 |
-
try:
|
| 283 |
-
resolver_prompt = f"Fix this JSON. Input:\n```json\n{raw}\n```\nReturn valid JSON only."
|
| 284 |
-
r = agent_json_resolver.invoke({"messages": [{"role": "user", "content": resolver_prompt}]})
|
| 285 |
-
|
| 286 |
-
rtxt = None
|
| 287 |
-
if isinstance(r, str):
|
| 288 |
-
rtxt = r
|
| 289 |
-
elif hasattr(r, "content"):
|
| 290 |
-
rtxt = r.content
|
| 291 |
-
elif isinstance(r, dict):
|
| 292 |
-
msgs = r.get("messages")
|
| 293 |
-
if msgs:
|
| 294 |
-
last_msg = msgs[-1]
|
| 295 |
-
if isinstance(last_msg, str):
|
| 296 |
-
rtxt = last_msg
|
| 297 |
-
elif hasattr(last_msg, "content"):
|
| 298 |
-
rtxt = last_msg.content
|
| 299 |
-
elif isinstance(last_msg, dict):
|
| 300 |
-
rtxt = last_msg.get("content", "")
|
| 301 |
-
else:
|
| 302 |
-
rtxt = str(last_msg)
|
| 303 |
-
else:
|
| 304 |
-
rtxt = json.dumps(r)
|
| 305 |
-
else:
|
| 306 |
-
rtxt = str(r)
|
| 307 |
-
|
| 308 |
-
corrected = extract_json_from_llm_response(rtxt)
|
| 309 |
-
return corrected
|
| 310 |
-
except Exception as e2:
|
| 311 |
-
logger.exception("JSON resolver also failed: %s", e2)
|
| 312 |
-
return {}
|
| 313 |
-
|
| 314 |
-
# -------------------- Define LangGraph State schema -------------------------
|
| 315 |
-
class State(TypedDict):
|
| 316 |
-
patient_meta: NotRequired[Dict[str, Any]]
|
| 317 |
-
patient_id: str
|
| 318 |
-
documents: List[Dict[str, Any]]
|
| 319 |
-
medications: List[str]
|
| 320 |
-
patientDetails: NotRequired[Dict[str, Any]]
|
| 321 |
-
doctorDetails: NotRequired[Dict[str, Any]]
|
| 322 |
-
reports: NotRequired[List[Dict[str, Any]]]
|
| 323 |
-
overallAnalysis: NotRequired[Dict[str, Any]]
|
| 324 |
-
valid: NotRequired[bool]
|
| 325 |
-
missing: NotRequired[List[str]]
|
| 326 |
-
|
| 327 |
-
# -------------------- Node implementations as LangGraph nodes -------------------------
|
| 328 |
-
def patient_details_node(state: State) -> dict:
|
| 329 |
-
payload = {
|
| 330 |
-
"patient_meta": state.get("patient_meta", {}),
|
| 331 |
-
"documents": state.get("documents", []),
|
| 332 |
-
"medications": state.get("medications", [])
|
| 333 |
-
}
|
| 334 |
-
logger.info("Running patient_details_node")
|
| 335 |
-
out = call_node_agent(PATIENT_NODE_PROMPT, payload)
|
| 336 |
-
return {"patientDetails": out.get("patientDetails", {}) if isinstance(out, dict) else {}}
|
| 337 |
-
|
| 338 |
-
def doctor_details_node(state: State) -> dict:
|
| 339 |
-
payload = {
|
| 340 |
-
"documents": state.get("documents", []),
|
| 341 |
-
"medications": state.get("medications", [])
|
| 342 |
-
}
|
| 343 |
-
logger.info("Running doctor_details_node")
|
| 344 |
-
out = call_node_agent(DOCTOR_NODE_PROMPT, payload)
|
| 345 |
-
return {"doctorDetails": out.get("doctorDetails", {}) if isinstance(out, dict) else {}}
|
| 346 |
-
|
| 347 |
-
def test_report_node(state: State) -> dict:
|
| 348 |
-
payload = {
|
| 349 |
-
"documents": state.get("documents", []),
|
| 350 |
-
"medications": state.get("medications", [])
|
| 351 |
-
}
|
| 352 |
-
logger.info("Running test_report_node")
|
| 353 |
-
out = call_node_agent(TEST_REPORT_NODE_PROMPT, payload)
|
| 354 |
-
return {"reports": out.get("reports", []) if isinstance(out, dict) else []}
|
| 355 |
-
|
| 356 |
-
def analysis_node(state: State) -> dict:
|
| 357 |
-
payload = {
|
| 358 |
-
"patientDetails": state.get("patientDetails", {}),
|
| 359 |
-
"doctorDetails": state.get("doctorDetails", {}),
|
| 360 |
-
"reports": state.get("reports", []),
|
| 361 |
-
"medications": state.get("medications", [])
|
| 362 |
-
}
|
| 363 |
-
logger.info("Running analysis_node")
|
| 364 |
-
out = call_node_agent(ANALYSIS_NODE_PROMPT, payload)
|
| 365 |
-
return {"overallAnalysis": out.get("overallAnalysis", {}) if isinstance(out, dict) else {}}
|
| 366 |
-
|
| 367 |
-
def condition_loop_node(state: State) -> dict:
|
| 368 |
-
payload = {
|
| 369 |
-
"patientDetails": state.get("patientDetails", {}),
|
| 370 |
-
"doctorDetails": state.get("doctorDetails", {}),
|
| 371 |
-
"reports": state.get("reports", []),
|
| 372 |
-
"overallAnalysis": state.get("overallAnalysis", {})
|
| 373 |
-
}
|
| 374 |
-
logger.info("Running condition_loop_node (validation)")
|
| 375 |
-
out = call_node_agent(CONDITION_LOOP_NODE_PROMPT, payload)
|
| 376 |
-
if isinstance(out, dict) and "valid" in out:
|
| 377 |
-
return {"valid": bool(out.get("valid")), "missing": out.get("missing", [])}
|
| 378 |
-
missing = []
|
| 379 |
-
if not state.get("patientDetails"):
|
| 380 |
-
missing.append("patientDetails")
|
| 381 |
-
if not state.get("reports"):
|
| 382 |
-
missing.append("reports")
|
| 383 |
-
return {"valid": len(missing) == 0, "missing": missing}
|
| 384 |
-
|
| 385 |
-
# -------------------- Build LangGraph StateGraph -------------------------
|
| 386 |
-
graph_builder = StateGraph(State)
|
| 387 |
-
|
| 388 |
-
graph_builder.add_node("patient_details", patient_details_node)
|
| 389 |
-
graph_builder.add_node("doctor_details", doctor_details_node)
|
| 390 |
-
graph_builder.add_node("test_report", test_report_node)
|
| 391 |
-
graph_builder.add_node("analysis", analysis_node)
|
| 392 |
-
graph_builder.add_node("condition_loop", condition_loop_node)
|
| 393 |
-
|
| 394 |
-
graph_builder.add_edge(START, "patient_details")
|
| 395 |
-
graph_builder.add_edge("patient_details", "doctor_details")
|
| 396 |
-
graph_builder.add_edge("doctor_details", "test_report")
|
| 397 |
-
graph_builder.add_edge("test_report", "analysis")
|
| 398 |
-
graph_builder.add_edge("analysis", "condition_loop")
|
| 399 |
-
graph_builder.add_edge("condition_loop", END)
|
| 400 |
-
|
| 401 |
-
graph = graph_builder.compile()
|
| 402 |
-
|
| 403 |
-
# -------------------- Flask app & endpoints -------------------------------
|
| 404 |
-
# -------------------- Flask app & endpoints -------------------------------
|
| 405 |
-
BASE_DIR = Path(__file__).resolve().parent
|
| 406 |
-
static_folder = BASE_DIR / "static"
|
| 407 |
-
app = Flask(__name__, static_folder=str(static_folder), static_url_path="/static")
|
| 408 |
-
CORS(app) # dev convenience; lock down in production
|
| 409 |
-
|
| 410 |
-
# serve frontend root
|
| 411 |
@app.route("/", methods=["GET"])
|
| 412 |
def serve_frontend():
|
|
|
|
| 413 |
try:
|
| 414 |
-
return app.send_static_file("
|
| 415 |
-
except Exception
|
| 416 |
-
|
| 417 |
-
return "<h3>frontend.html not found in static/ — drop your frontend.html there.</h3>", 404
|
| 418 |
|
| 419 |
-
@app.route("/
|
| 420 |
-
def
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
return jsonify({"error": "Invalid JSON request"}), 400
|
| 426 |
|
| 427 |
patient_id = data.get("patient_id")
|
| 428 |
-
|
| 429 |
-
|
| 430 |
|
| 431 |
-
|
| 432 |
-
|
| 433 |
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
return jsonify({"error": f"patient folder not found: {patient_folder}"}), 404
|
| 437 |
-
|
| 438 |
-
documents = []
|
| 439 |
combined_text_parts = []
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
if not file_path.exists():
|
| 444 |
-
logger.warning("file not found: %s", file_path)
|
| 445 |
-
continue
|
| 446 |
-
try:
|
| 447 |
-
elements = partition_pdf(filename=str(file_path))
|
| 448 |
-
page_text = "\n".join([el.text for el in elements if hasattr(el, "text") and el.text])
|
| 449 |
-
except Exception:
|
| 450 |
-
logger.exception(f"Failed to parse PDF {file_path}")
|
| 451 |
page_text = ""
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 480 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 481 |
try:
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
if
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
result_state["patientDetails"] = extra_patient_meta or {"name": "", "age": "", "sex": "", "pid": patient_id}
|
| 490 |
-
if "reports" in missing:
|
| 491 |
-
result_state["reports"] = []
|
| 492 |
-
# Re-run analysis node to keep overallAnalysis consistent
|
| 493 |
-
result_state.update(analysis_node(result_state))
|
| 494 |
-
# Re-validate
|
| 495 |
-
cond = condition_loop_node(result_state)
|
| 496 |
-
result_state.update(cond)
|
| 497 |
-
|
| 498 |
-
safe_response = {
|
| 499 |
-
"patientDetails": result_state.get("patientDetails", {"name": "", "age": "", "sex": "", "pid": patient_id}),
|
| 500 |
-
"doctorDetails": result_state.get("doctorDetails", {"referredBy": ""}),
|
| 501 |
-
"reports": result_state.get("reports", []),
|
| 502 |
-
"overallAnalysis": result_state.get("overallAnalysis", {"summary": "", "recommendations": "", "longTermTrends": ""}),
|
| 503 |
-
"_pre_extracted_medications": result_state.get("medications", []),
|
| 504 |
-
"_validation": {
|
| 505 |
-
"valid": result_state.get("valid", True),
|
| 506 |
-
"missing": result_state.get("missing", [])
|
| 507 |
-
}
|
| 508 |
-
}
|
| 509 |
-
return jsonify(safe_response), 200
|
| 510 |
|
|
|
|
|
|
|
|
|
|
| 511 |
except Exception as e:
|
| 512 |
-
logger.exception("
|
| 513 |
-
return jsonify({"error": "
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
""
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
-F "files[]=@/path/to/report2.pdf"
|
| 529 |
-
"""
|
| 530 |
-
try:
|
| 531 |
-
# patient id can be in form or args (for convenience)
|
| 532 |
-
patient_id = request.form.get("patient_id") or request.args.get("patient_id")
|
| 533 |
-
if not patient_id:
|
| 534 |
-
return jsonify({"error": "patient_id form field required"}), 400
|
| 535 |
-
|
| 536 |
-
# get uploaded files (support both files and files[] naming)
|
| 537 |
-
uploaded_files = request.files.getlist("files")
|
| 538 |
-
if not uploaded_files:
|
| 539 |
-
# fallback: single file under name 'file'
|
| 540 |
-
single = request.files.get("file")
|
| 541 |
-
if single:
|
| 542 |
-
uploaded_files = [single]
|
| 543 |
-
|
| 544 |
-
if not uploaded_files:
|
| 545 |
-
return jsonify({"error": "no files uploaded (use form field 'files')"}), 400
|
| 546 |
-
|
| 547 |
-
# create patient folder under REPORTS_ROOT/<patient_id>
|
| 548 |
-
patient_folder = REPORTS_ROOT / str(patient_id)
|
| 549 |
-
patient_folder.mkdir(parents=True, exist_ok=True)
|
| 550 |
-
|
| 551 |
-
saved = []
|
| 552 |
-
skipped = []
|
| 553 |
-
|
| 554 |
-
for file_storage in uploaded_files:
|
| 555 |
-
orig_name = getattr(file_storage, "filename", "") or ""
|
| 556 |
-
filename = secure_filename(orig_name)
|
| 557 |
-
if not filename:
|
| 558 |
-
skipped.append({"filename": orig_name, "reason": "invalid filename"})
|
| 559 |
-
continue
|
| 560 |
-
|
| 561 |
-
# extension check
|
| 562 |
-
ext = filename.rsplit(".", 1)[1].lower() if "." in filename else ""
|
| 563 |
-
if ext not in ALLOWED_EXTENSIONS:
|
| 564 |
-
skipped.append({"filename": filename, "reason": f"extension '{ext}' not allowed"})
|
| 565 |
-
continue
|
| 566 |
-
|
| 567 |
-
# avoid overwriting: if collision, add numeric suffix
|
| 568 |
-
dest = patient_folder / filename
|
| 569 |
-
if dest.exists():
|
| 570 |
-
base, dot, extension = filename.rpartition(".")
|
| 571 |
-
# if no base (e.g. ".bashrc") fallback
|
| 572 |
-
base = base or filename
|
| 573 |
-
i = 1
|
| 574 |
-
while True:
|
| 575 |
-
candidate = f"{base}__{i}.{extension}" if extension else f"{base}__{i}"
|
| 576 |
-
dest = patient_folder / candidate
|
| 577 |
-
if not dest.exists():
|
| 578 |
-
filename = candidate
|
| 579 |
-
break
|
| 580 |
-
i += 1
|
| 581 |
-
|
| 582 |
-
try:
|
| 583 |
-
file_storage.save(str(dest))
|
| 584 |
-
saved.append(filename)
|
| 585 |
-
except Exception as e:
|
| 586 |
-
logger.exception("Failed to save uploaded file %s: %s", filename, e)
|
| 587 |
-
skipped.append({"filename": filename, "reason": f"save failed: {e}"})
|
| 588 |
-
|
| 589 |
-
return jsonify({
|
| 590 |
-
"patient_id": str(patient_id),
|
| 591 |
-
"saved": saved,
|
| 592 |
-
"skipped": skipped,
|
| 593 |
-
"patient_folder": str(patient_folder)
|
| 594 |
-
}), 200
|
| 595 |
-
|
| 596 |
-
except Exception as exc:
|
| 597 |
-
logger.exception("Upload failed: %s", exc)
|
| 598 |
-
return jsonify({"error": "upload failed", "detail": str(exc)}), 500
|
| 599 |
|
| 600 |
@app.route("/ping", methods=["GET"])
|
| 601 |
def ping():
|
|
@@ -604,4 +240,3 @@ def ping():
|
|
| 604 |
if __name__ == "__main__":
|
| 605 |
port = int(os.getenv("PORT", 7860))
|
| 606 |
app.run(host="0.0.0.0", port=port, debug=True)
|
| 607 |
-
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
|
|
|
|
|
|
| 2 |
import os
|
| 3 |
import json
|
| 4 |
import logging
|
| 5 |
import re
|
| 6 |
+
from typing import Dict, Any
|
| 7 |
from pathlib import Path
|
| 8 |
+
from unstructured.partition.pdf import partition_pdf
|
|
|
|
| 9 |
from flask import Flask, request, jsonify
|
| 10 |
from flask_cors import CORS
|
| 11 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
|
|
|
| 12 |
from bloatectomy import bloatectomy
|
| 13 |
+
from werkzeug.utils import secure_filename
|
|
|
|
| 14 |
from langchain_groq import ChatGroq
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
from typing_extensions import TypedDict, NotRequired
|
| 16 |
|
| 17 |
+
# --- Logging ---
|
| 18 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
|
| 19 |
+
logger = logging.getLogger("patient-assistant")
|
| 20 |
|
| 21 |
+
# --- Load environment ---
|
| 22 |
load_dotenv()
|
| 23 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
| 24 |
+
if not GROQ_API_KEY:
|
| 25 |
+
logger.error("GROQ_API_KEY not set in environment")
|
| 26 |
+
exit(1)
|
| 27 |
+
|
| 28 |
+
# --- Flask app setup ---
|
| 29 |
+
BASE_DIR = Path(__file__).resolve().parent
|
| 30 |
+
REPORTS_ROOT = Path(os.getenv("REPORTS_ROOT", str(BASE_DIR / "reports")))
|
| 31 |
+
static_folder = BASE_DIR / "static"
|
| 32 |
+
|
| 33 |
+
app = Flask(__name__, static_folder=str(static_folder), static_url_path="/static")
|
| 34 |
+
CORS(app)
|
| 35 |
+
|
| 36 |
+
# --- LLM setup ---
|
| 37 |
llm = ChatGroq(
|
| 38 |
model=os.getenv("LLM_MODEL", "meta-llama/llama-4-scout-17b-16e-instruct"),
|
| 39 |
temperature=0.0,
|
| 40 |
+
max_tokens=1024,
|
| 41 |
+
api_key=GROQ_API_KEY,
|
| 42 |
)
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
def clean_notes_with_bloatectomy(text: str, style: str = "remov") -> str:
|
| 45 |
+
"""Helper function to clean up text using the bloatectomy library."""
|
| 46 |
try:
|
| 47 |
b = bloatectomy(text, style=style, output="html")
|
| 48 |
tokens = getattr(b, "tokens", None)
|
|
|
|
| 53 |
logger.exception("Bloatectomy cleaning failed; returning original text")
|
| 54 |
return text
|
| 55 |
|
| 56 |
+
# --- Agent prompt instructions ---
|
| 57 |
+
PATIENT_ASSISTANT_PROMPT = """
|
| 58 |
+
You are a patient assistant helping to analyze medical records and reports. Your goal is to provide a comprehensive response based on the patient's health history and the current conversation.
|
| 59 |
+
|
| 60 |
+
Your tasks include:
|
| 61 |
+
- Analyzing medical records and reports to detect anomalies, redundant tests, or misleading treatments.
|
| 62 |
+
- Suggesting preventive care based on the overall patient health history.
|
| 63 |
+
- Optimizing healthcare costs by comparing past visits and treatments, helping patients make smarter choices.
|
| 64 |
+
- Offering personalized lifestyle recommendations, such as adopting healthier food habits, daily routines, and regular health checks.
|
| 65 |
+
- Generating a natural, helpful reply to the user.
|
| 66 |
+
|
| 67 |
+
You will be provided with the last user message, the conversation history, and a summary of the patient's medical reports. Use this information to give a tailored and informative response.
|
| 68 |
+
|
| 69 |
+
STRICT OUTPUT FORMAT (JSON ONLY):
|
| 70 |
+
Return a single JSON object with the following keys:
|
| 71 |
+
- assistant_reply: string // a natural language reply to the user (short, helpful, always present)
|
| 72 |
+
- patientDetails: object // keys may include name, problem, city, contact (update if user shared info)
|
| 73 |
+
- conversationSummary: string (optional) // short summary of conversation + relevant patient docs
|
| 74 |
+
|
| 75 |
+
Rules:
|
| 76 |
+
- ALWAYS include `assistant_reply` as a non-empty string.
|
| 77 |
+
- Do NOT produce any text outside the JSON object.
|
| 78 |
+
- Be concise in `assistant_reply`. If you need more details, ask a targeted follow-up question.
|
| 79 |
+
- Do not make up information that is not present in the provided medical reports or conversation history.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
"""
|
| 81 |
|
| 82 |
+
# --- JSON extraction helper ---
|
| 83 |
+
def extract_json_from_llm_response(raw_response: str) -> dict:
|
| 84 |
+
"""Safely extracts a JSON object from a string that might contain extra text or markdown."""
|
| 85 |
+
default = {
|
| 86 |
+
"assistant_reply": "I'm sorry — I couldn't understand that. Could you please rephrase?",
|
| 87 |
+
"patientDetails": {},
|
| 88 |
+
"conversationSummary": "",
|
| 89 |
+
}
|
| 90 |
|
| 91 |
+
if not raw_response or not isinstance(raw_response, str):
|
| 92 |
+
return default
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
+
# Find the JSON object, ignoring any markdown code fences
|
| 95 |
+
m = re.search(r"```(?:json)?\s*([\s\S]*?)\s*```", raw_response)
|
| 96 |
+
json_string = m.group(1).strip() if m else raw_response
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
+
# Find the first opening brace and the last closing brace
|
| 99 |
+
first = json_string.find('{')
|
| 100 |
+
last = json_string.rfind('}')
|
| 101 |
+
if first == -1 or last == -1 or first >= last:
|
| 102 |
+
try:
|
| 103 |
+
return json.loads(json_string)
|
| 104 |
+
except Exception:
|
| 105 |
+
logger.warning("Could not locate JSON braces in LLM output. Falling back to default.")
|
| 106 |
+
return default
|
| 107 |
+
|
| 108 |
+
candidate = json_string[first:last+1]
|
| 109 |
+
# Remove trailing commas that might cause parsing issues
|
| 110 |
+
candidate = re.sub(r',\s*(?=[}\]])', '', candidate)
|
| 111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
try:
|
| 113 |
+
parsed = json.loads(candidate)
|
| 114 |
+
except Exception as e:
|
| 115 |
+
logger.warning("Failed to parse JSON from LLM output: %s", e)
|
| 116 |
+
return default
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
+
# Basic validation of the parsed JSON
|
| 119 |
+
if isinstance(parsed, dict) and "assistant_reply" in parsed and isinstance(parsed["assistant_reply"], str) and parsed["assistant_reply"].strip():
|
| 120 |
+
parsed.setdefault("patientDetails", {})
|
| 121 |
+
parsed.setdefault("conversationSummary", "")
|
| 122 |
return parsed
|
| 123 |
+
else:
|
| 124 |
+
logger.warning("Parsed JSON missing 'assistant_reply' or invalid format. Returning default.")
|
| 125 |
+
return default
|
| 126 |
|
| 127 |
+
# --- Flask routes ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
@app.route("/", methods=["GET"])
|
| 129 |
def serve_frontend():
|
| 130 |
+
"""Serves the frontend HTML file."""
|
| 131 |
try:
|
| 132 |
+
return app.send_static_file("frontend2.html")
|
| 133 |
+
except Exception:
|
| 134 |
+
return "<h3>frontend2.html not found in static/ — please add your frontend2.html there.</h3>", 404
|
|
|
|
| 135 |
|
| 136 |
+
@app.route("/chat", methods=["POST"])
|
| 137 |
+
def chat():
|
| 138 |
+
"""Handles the chat conversation with the assistant."""
|
| 139 |
+
data = request.get_json(force=True)
|
| 140 |
+
if not isinstance(data, dict):
|
| 141 |
+
return jsonify({"error": "invalid request body"}), 400
|
|
|
|
| 142 |
|
| 143 |
patient_id = data.get("patient_id")
|
| 144 |
+
if not patient_id:
|
| 145 |
+
return jsonify({"error": "patient_id required"}), 400
|
| 146 |
|
| 147 |
+
chat_history = data.get("chat_history") or []
|
| 148 |
+
patient_state = data.get("patient_state") or {}
|
| 149 |
|
| 150 |
+
# --- Read and parse patient reports ---
|
| 151 |
+
patient_folder = REPORTS_ROOT / f"p_{patient_id}"
|
|
|
|
|
|
|
|
|
|
| 152 |
combined_text_parts = []
|
| 153 |
+
if patient_folder.exists() and patient_folder.is_dir():
|
| 154 |
+
for fname in sorted(os.listdir(patient_folder)):
|
| 155 |
+
file_path = patient_folder / fname
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
page_text = ""
|
| 157 |
+
if partition_pdf is not None and str(file_path).lower().endswith('.pdf'):
|
| 158 |
+
try:
|
| 159 |
+
elements = partition_pdf(filename=str(file_path))
|
| 160 |
+
page_text = "\n".join([el.text for el in elements if hasattr(el, 'text') and el.text])
|
| 161 |
+
except Exception:
|
| 162 |
+
logger.exception("Failed to parse PDF %s", file_path)
|
| 163 |
+
else:
|
| 164 |
+
try:
|
| 165 |
+
page_text = file_path.read_text(encoding='utf-8', errors='ignore')
|
| 166 |
+
except Exception:
|
| 167 |
+
page_text = ""
|
| 168 |
+
|
| 169 |
+
if page_text:
|
| 170 |
+
cleaned = clean_notes_with_bloatectomy(page_text, style="remov")
|
| 171 |
+
if cleaned:
|
| 172 |
+
combined_text_parts.append(cleaned)
|
| 173 |
+
|
| 174 |
+
# --- Prepare the state for the LLM ---
|
| 175 |
+
state = patient_state.copy()
|
| 176 |
+
state["lastUserMessage"] = ""
|
| 177 |
+
if chat_history:
|
| 178 |
+
# Find the last user message
|
| 179 |
+
for msg in reversed(chat_history):
|
| 180 |
+
if msg.get("role") == "user" and msg.get("content"):
|
| 181 |
+
state["lastUserMessage"] = msg["content"]
|
| 182 |
+
break
|
| 183 |
+
|
| 184 |
+
# Update the conversation summary with the parsed documents
|
| 185 |
+
base_summary = state.get("conversationSummary", "") or ""
|
| 186 |
+
docs_summary = "\n\n".join(combined_text_parts)
|
| 187 |
+
if docs_summary:
|
| 188 |
+
state["conversationSummary"] = (base_summary + "\n\n" + docs_summary).strip()
|
| 189 |
+
else:
|
| 190 |
+
state["conversationSummary"] = base_summary
|
| 191 |
+
|
| 192 |
+
# --- Direct LLM Invocation ---
|
| 193 |
+
user_prompt = f"""
|
| 194 |
+
Current patientDetails: {json.dumps(state.get("patientDetails", {}))}
|
| 195 |
+
Current conversationSummary: {state.get("conversationSummary", "")}
|
| 196 |
+
Last user message: {state.get("lastUserMessage", "")}
|
| 197 |
+
|
| 198 |
+
Return ONLY valid JSON with keys: assistant_reply, patientDetails, conversationSummary.
|
| 199 |
+
"""
|
| 200 |
|
| 201 |
+
messages = [
|
| 202 |
+
{"role": "system", "content": PATIENT_ASSISTANT_PROMPT},
|
| 203 |
+
{"role": "user", "content": user_prompt}
|
| 204 |
+
]
|
| 205 |
+
|
| 206 |
try:
|
| 207 |
+
logger.info("Invoking LLM with prepared state and prompt...")
|
| 208 |
+
llm_response = llm.invoke(messages)
|
| 209 |
+
raw_response = ""
|
| 210 |
+
if hasattr(llm_response, "content"):
|
| 211 |
+
raw_response = llm_response.content
|
| 212 |
+
else:
|
| 213 |
+
raw_response = str(llm_response)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
|
| 215 |
+
logger.info(f"Raw LLM response: {raw_response}")
|
| 216 |
+
parsed_result = extract_json_from_llm_response(raw_response)
|
| 217 |
+
|
| 218 |
except Exception as e:
|
| 219 |
+
logger.exception("LLM invocation failed")
|
| 220 |
+
return jsonify({"error": "LLM invocation failed", "detail": str(e)}), 500
|
| 221 |
+
|
| 222 |
+
updated_state = parsed_result or {}
|
| 223 |
+
|
| 224 |
+
assistant_reply = updated_state.get("assistant_reply")
|
| 225 |
+
if not assistant_reply or not isinstance(assistant_reply, str) or not assistant_reply.strip():
|
| 226 |
+
# Fallback to a polite message if the LLM response is invalid or empty
|
| 227 |
+
assistant_reply = "I'm here to help — could you tell me more about your symptoms?"
|
| 228 |
+
|
| 229 |
+
response_payload = {
|
| 230 |
+
"assistant_reply": assistant_reply,
|
| 231 |
+
"updated_state": updated_state,
|
| 232 |
+
}
|
| 233 |
+
|
| 234 |
+
return jsonify(response_payload)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
|
| 236 |
@app.route("/ping", methods=["GET"])
|
| 237 |
def ping():
|
|
|
|
| 240 |
if __name__ == "__main__":
|
| 241 |
port = int(os.getenv("PORT", 7860))
|
| 242 |
app.run(host="0.0.0.0", port=port, debug=True)
|
|
|