#!/usr/bin/env python3
import os
import json
import logging
import re
from typing import Dict, Any, List, Optional
from pathlib import Path
from flask import Flask, request, jsonify
from flask_cors import CORS
from dotenv import load_dotenv
from werkzeug.utils import secure_filename
from langchain_groq import ChatGroq
from typing_extensions import TypedDict
# --- Type Definitions for State Management ---
class TaggedReply(TypedDict):
reply: str
tags: List[str]
class AssistantState(TypedDict):
conversationSummary: str
language: str
taggedReplies: List[TaggedReply]
# Note: lastUserMessage is calculated on request, not stored in state
# --- Logging ---
logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
logger = logging.getLogger("code-assistant")
# --- Load environment ---
load_dotenv()
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
if not GROQ_API_KEY:
logger.error("GROQ_API_KEY not set in environment")
# For deployment, consider raising an exception instead of exiting:
# raise ValueError("GROQ_API_KEY not set in environment")
exit(1)
# --- Flask app setup (MOVED HERE) ---
BASE_DIR = Path(__file__).resolve().parent
static_folder = BASE_DIR / "static"
# The 'app' object MUST be defined before its first use, e.g., in @app.route
app = Flask(__name__, static_folder=str(static_folder), static_url_path="/static")
CORS(app)
# --- LLM setup ---
# Using a model that's good for coding tasks
llm = ChatGroq(
model=os.getenv("LLM_MODEL", "meta-llama/llama-4-scout-17b-16e-instruct"), # Use the supported model
temperature=0,
# max_tokens=2048,
api_key=GROQ_API_KEY,
)
PROGRAMMING_ASSISTANT_PROMPT = """
You are an expert programming assistant. Your role is to provide code suggestions, fix bugs, explain programming concepts, and offer contextual help based on the user's query and preferred programming language.
**CONTEXT HANDLING RULES (Follow these strictly):**
- **Conversation Summary:** At the end of every response, you MUST provide an updated, concise `conversationSummary` based on the entire chat history provided. This summary helps you maintain context.
- **Language Adaptation:** Adjust your suggestions, code, and explanations to the programming language specified in the 'language' field of the 'AssistantState'.
STRICT OUTPUT FORMAT (JSON ONLY):
Return a single JSON object with the following keys:
- assistant_reply: string // a natural language reply TO THE USER, INCLUDING ANY REQUESTED CODE BLOCK(S).
- state_updates: object // updates to the internal state, must include: language, conversationSummary
- suggested_tags: array of strings // a list of 1-3 relevant tags for the assistant_reply
Rules:
- ALWAYS include `assistant_reply` as a non-empty string.
- If the user is asking for code, the code MUST be enclosed in appropriate markdown code blocks (e.g., ```python\n...\n```) and placed within the `assistant_reply` string.
- Do NOT produce any text outside the JSON object.
- Be concise in the non-code parts of `assistant_reply`.
"""
def extract_json_from_llm_response(raw_response: str) -> dict:
default = {
"assistant_reply": "I'm sorry — I couldn't understand that. Could you please rephrase?",
"state_updates": {"conversationSummary": "", "language": "Python"},
"suggested_tags": [],
}
# Simplified JSON extraction logic
if not raw_response or not isinstance(raw_response, str):
return default
m = re.search(r"```(?:json)?\s*([\s\S]*?)\s*```", raw_response)
json_string = m.group(1).strip() if m else raw_response
first = json_string.find('{')
last = json_string.rfind('}')
candidate = json_string[first:last+1] if first != -1 and last != -1 and first < last else json_string
candidate = re.sub(r',\s*(?=[}\]])', '', candidate)
try:
parsed = json.loads(candidate)
except Exception as e:
logger.warning("Failed to parse JSON from LLM output: %s. Candidate: %s", e, candidate)
return default
if isinstance(parsed, dict) and "assistant_reply" in parsed and parsed["assistant_reply"].strip():
parsed.setdefault("state_updates", {})
parsed["state_updates"].setdefault("conversationSummary", "")
parsed["state_updates"].setdefault("language", "Python")
parsed.setdefault("suggested_tags", [])
return parsed
else:
logger.warning("Parsed JSON missing 'assistant_reply' or invalid format. Returning default.")
return default
def detect_language_from_text(text: str) -> Optional[str]:
"""Simple check for common programming languages."""
if not text:
return None
lower = text.lower()
known_languages = ["python", "javascript", "java", "c++", "c#", "go", "ruby", "php", "typescript", "swift"]
lang_match = re.search(r'\b(in|using|for)\s+(' + '|'.join(known_languages) + r')\b', lower)
if lang_match:
return lang_match.group(2).capitalize()
return None
# --- Flask routes ---
@app.route("/", methods=["GET"]) # <-- 'app' is now defined!
def serve_frontend():
try:
return app.send_static_file("frontend.html")
except Exception:
return "
frontend.html not found in static/ — please add your frontend.html there.
", 404
@app.route("/chat", methods=["POST"])
def chat():
data = request.get_json(force=True)
if not isinstance(data, dict):
return jsonify({"error": "invalid request body"}), 400
# chat_history now receives the full conversation history from the corrected frontend
chat_history: List[Dict[str, str]] = data.get("chat_history") or []
assistant_state: AssistantState = data.get("assistant_state") or {}
# Initialize/Clean up state
state: AssistantState = {
"conversationSummary": assistant_state.get("conversationSummary", ""),
"language": assistant_state.get("language", "Python"),
"taggedReplies": assistant_state.get("taggedReplies", []),
}
# 1. Prepare LLM Messages from Full History
llm_messages = [{"role": "system", "content": PROGRAMMING_ASSISTANT_PROMPT}]
last_user_message = ""
for msg in chat_history:
role = msg.get("role")
content = msg.get("content")
if role in ["user", "assistant"] and content:
llm_messages.append({"role": role, "content": content})
if role == "user":
last_user_message = content
# 2. Language Detection & State Update
detected_lang = detect_language_from_text(last_user_message)
if detected_lang and detected_lang.lower() != state["language"].lower():
logger.info("Detected new language: %s", detected_lang)
state["language"] = detected_lang
# 3. Inject Contextual Hint and State into the LAST user message
# This ensures the LLM has immediate access to the *summarized* history and current language.
context_hint = f"Current Language: {state['language']}. Conversation Summary so far: {state['conversationSummary']}"
# Update the content of the last message in llm_messages
if llm_messages and llm_messages[-1]["role"] == "user":
# Overwrite the last user message to include the context hint
llm_messages[-1]["content"] = f"USER MESSAGE: {last_user_message}\n\n[CONTEXT HINT: {context_hint}]"
elif last_user_message:
# Should not happen with the corrected frontend, but handles fresh start gracefully
llm_messages.append({"role": "user", "content": f"USER MESSAGE: {last_user_message}\n\n[CONTEXT HINT: {context_hint}]"})
try:
logger.info("Invoking LLM with full history and prepared prompt...")
llm_response = llm.invoke(llm_messages)
raw_response = llm_response.content if hasattr(llm_response, "content") else str(llm_response)
print("llm_response",llm_response)
logger.info(f"Raw LLM response: {raw_response}")
parsed_result = extract_json_from_llm_response(raw_response)
except Exception as e:
logger.exception("LLM invocation failed")
# CRITICAL FIX: The Groq model might still be the problem if environment is inconsistent.
error_detail = str(e)
if 'decommissioned' in error_detail:
error_detail = "LLM Model Error: The model is likely decommissioned. Please check the 'LLM_MODEL' environment variable or the default model in app.py."
return jsonify({"error": "LLM invocation failed", "detail": error_detail}), 500
# 4. State Update from LLM
updated_state_from_llm = parsed_result.get("state_updates", {})
# CRUCIAL: Update state with the NEW summary generated by the LLM
if 'conversationSummary' in updated_state_from_llm:
state["conversationSummary"] = updated_state_from_llm["conversationSummary"]
if 'language' in updated_state_from_llm:
state["language"] = updated_state_from_llm["language"]
assistant_reply = parsed_result.get("assistant_reply")
if not assistant_reply or not isinstance(assistant_reply, str) or not assistant_reply.strip():
assistant_reply = "I'm here to help with your code! What programming language are you using?"
# 5. Final Response Payload
response_payload = {
"assistant_reply": assistant_reply,
"updated_state": state,
"suggested_tags": parsed_result.get("suggested_tags", []),
}
return jsonify(response_payload)
@app.route("/tag_reply", methods=["POST"])
def tag_reply():
data = request.get_json(force=True)
if not isinstance(data, dict):
return jsonify({"error": "invalid request body"}), 400
reply_content = data.get("reply")
tags = data.get("tags")
assistant_state: AssistantState = data.get("assistant_state") or {}
if not reply_content or not tags:
return jsonify({"error": "Missing 'reply' or 'tags' in request"}), 400
tags = [str(t).strip() for t in tags if str(t).strip()]
if not tags:
return jsonify({"error": "Tags list cannot be empty"}), 400
state: AssistantState = {
"conversationSummary": assistant_state.get("conversationSummary", ""),
"language": assistant_state.get("language", "Python"),
"taggedReplies": assistant_state.get("taggedReplies", []),
}
new_tagged_reply: TaggedReply = {
"reply": reply_content,
"tags": tags,
}
state["taggedReplies"].append(new_tagged_reply)
logger.info("Reply tagged with: %s", tags)
return jsonify({
"message": "Reply saved and tagged successfully.",
"updated_state": state,
}), 200
@app.route("/ping", methods=["GET"])
def ping():
return jsonify({"status": "ok"})
if __name__ == "__main__":
port = int(os.getenv("PORT", 7860))
app.run(host="0.0.0.0", port=port, debug=True)